City of Cheyenne Board of Public Utilities

Volume 5 – Potable Water Storage and Distribution

2013 Cheyenne Water and Wastewater Master Plans

Final

November 27, 2013

Prepared for: **City of Cheyenne Board of Public Utilities** 2416 Snyder Ave. Cheyenne, WY 82001

Prepared by:

HDR Engineering 1670 Broadway, Suite 3400 Denver, CO 80202

HR

ONE COMPANY | Many Solutions*

Table of Contents

Lis	List of Tables						
Lis	∟ist of Charts5-iv						
Lis	ist of Figures						
Lis	t of Ap	opendices5-v					
Ab	Abbreviations and Acronyms5-						
5.1	Int	roduction					
5.2	Ex	isting Distribution System5-3					
	5.2.1	Pipelines5-3					
	5.2.2	Pressure Zones					
	5.2.3	Pump Stations					
	5.2.4	Potable Water Storage5-7					
5.3	Мс	odel Update and Validation5-9					
	5.3.1	System Components5-9					
	5.3.2	Water Demand Allocation 5-10					
	5.3.3	Validation5-16					
5.4	Dis	stribution System Analysis 5-25					
	5.4.1	Modeling Scenarios					
	5.4.2	Peak Hour Analysis Results5-26					
	5.4.3	Fire Flow Analysis Results5-35					
	5.4.4	Pressure Zone Analysis and Pressure Management 5-43					
5.5	Pu	mp Station Capacity Analysis 5-46					
	5.5.1	Evaluation Criteria					
	5.5.2	Pump Station Capacity Evaluation					
5.6	Ste	orage Capacity Analysis5-56					
	5.6.1	Evaluation Criteria					
	5.6.2	Storage Capacity Evaluation5-57					

5.7 South Cheyenne Water & Sewer District Evaluation			
5.8	Sy	stem Monitoring 5-66	
	5.8.1	Existing Monitoring Locations	
	5.8.2	Recommended Monitoring Locations 5-68	
	5.8.3	System Monitoring Data Types and Equipment 5-73	
	5.8.4	System Monitoring Implementation	
5.9	As	sessment and Rehabilitation5-79	
	5.9.1	Assessment Means 5-79	
	5.9.2	Assessment Method 5-80	
	5.9.3	Distribution System Assessment Implementation 5-82	
	5.9.4	Recent Rehabilitation Progress	
	5.9.5	Rehabilitation Recommendations 5-84	
5.1	0 Pre	eventative Maintenance 5-89	
	5.10.1	Level of Service	
	5.10.2	Asset Management 5-90	
	5.10.3	Preventative Maintenance Practices 5-93	
	5.10.4	Preventative Maintenance Implementation 5-98	
	5.10.5	Field Data Collection5-99	
5.1	1 Im	provement Recommendations 5-101	
	5.11.1	Infrastructure Improvements 5-101	
	5.11.2	Pressure Management 5-115	
	5.11.3	System Monitoring 5-117	
	5.11.4	Water Age Considerations 5-118	
	5.11.5	Assessment and Rehabilitation5-119	
	5.11.6	Preventative Maintenance 5-120	
5.1	2 Ca	pital Improvement Plan 5-123	
	5.12.1	Cost Estimating Assumptions 5-123	
	5.12.2	Capital Improvement Plans by Planning Period 5-124	

pendices5	-13	3()

List of Tables

Table 5-1 Water Pipelines by Material and Diameter5	-4
Table 5-2 Potable Water Pressure Zones 5-2	-6
Table 5-3 Existing Potable Water Pump Station Data 5-3	-7
Table 5-4 Existing Potable Water Storage Facilities 5-4	-8
Table 5-5 Matrix of Pipe Material, Age and Roughness Coefficients 5-1	10
Table 5-6 Potable Water Demand Projections	11
Table 5-7 Potable Water Peaking Factors 5-1	11
Table 5-8 New Large Users Allocated in the Model5-1	11
Table 5-9 County Zoning Codes with Unit Water Demands and Fire Flow	13
Table 5-10 Pressure Management Study – Summer Cycle Pressure and Model Results 5-1	19
Table 5-11 Pressure Management Study – Winter Cycle Pressure and Model Results 5-2	20
Table 5-12 Pressure Logger Data Collection in April and May 2013 and Model Results 5-2	21
Table 5-13 Master Meter SCADA Data – Peak Hour Comparison	22
Table 5-14 Master Meter SCADA Data – Average Day Comparison 5-2	23
Table 5-15 Modeling Scenarios	26
Table 5-16 2013 Junction Pressure by Pressure Zone during Peak Hour Demand 5-2	27
Table 5-17 2023 Junction Pressure by Pressure Zone during Peak Hour Demand 5-2	27
Table 5-18 2033 Junction Pressure by Pressure Zone during Peak Hour Demand 5-2	28
Table 5-19 2063 Junction Pressure by Pressure Zone during Peak Hour Demand 5-2	28
Table 5-20 2013 Fire Flow Availability from Hydrant Summary Table 5-3	35
Table 5-21 2023 Fire Flow Availability from Hydrant Summary Table 5-3	36
Table 5-22 2033 Fire Flow Availability from Hydrant Summary Table 5-3	36
Table 5-23 2063 Fire Flow Availability from Hydrant Summary Table	37
Table 5-24 Pump Station Capacity Analysis for Deer Avenue Zone 5-4	47
Table 5-25 Pump Station Capacity Analysis for Western Hills Zone 5-4	48

Table 5-26 Pump Station Capacity Analysis for Monterey Heights Zone
Table 5-27 Pump Station Capacity Analysis for The Pointe Zone 5-50
Table 5-28 Pump Station Capacity Analysis for North Range Business Park Zone 5-51
Table 5-29 Pump Station Capacity Analysis for Swan Ranch Zone
Table 5-30 Pump Station Capacity Analysis for Chalk Bluff Zone 5-53
Table 5-31 Pump Station Capacity Analysis for Northeast Zone 5-54
Table 5-32 Pump Station Capacity Analysis for Southeast Zone
Table 5-33 Storage Capacity Analysis for the Total System 5-58
Table 5-34 Storage Capacity Analysis for Swan Ranch Zone 5-61
Table 5-35 Storage Capacity Analysis for Chalk Bluff Zone 5-62
Table 5-36 Existing System Monitoring Locations 5-67
Table 5-37 Recommended System Monitoring Locations
Table 5-38 Pipe Material and Unit Cost Assumptions 5-123
Table 5-39 Near-term (2014-2023) Recommended Capital Improvement Plan 5-125
Table 5-40 Mid-term (2024-2033) Recommended Capital Improvement Plan 5-127
Table 5-41 Long-term (2034-2063) Recommended Capital Improvement Plan

List of Charts

Chart 5-1 Asset Management Plan Development Flowchart 5	5-91
---	------

List of Figures

Figure 5-1 Existing Potable Water Distribution System	. 5-5
Figure 5-2 Future Developable Land Map	5-14
Figure 5-3 Fire Flow Zoning Map	5-15
Figure 5-4 Pressure Loggers and Master Meter Map	5-18
Figure 5-5 Existing Peak Hour Pressure Map	5-31

Figure 5-6 2023 Peak Hour Pressure Map 5-32
Figure 5-7 2033 Peak Hour Pressure Map 5-33
Figure 5-8 2063 Peak Hour Pressure Map 5-34
Figure 5-9 Existing Fire Flow Map5-39
Figure 5-10 2023 Fire Flow Map 5-40
Figure 5-11 2033 Fire Flow Map 5-41
Figure 5-12 2063 Fire Flow Map 5-42
Figure 5-13 Future Pressure Zone Map 5-45
Figure 5-14 Storage Components 5-56
Figure 5-15 Existing and Recommended System Monitoring Locations 5-72
Figure 5-16 Radio/Cellular Telemetry Monitoring Data Collection Schematic
Figure 5-17 Assessment Scoring and Rehabilitation Selection Process
Figure 5-18 Recently Rehabilitated Mains (2003-2012) 5-87
Figure 5-19 Near-term Mains to be Rehabilitated (2013-2018)5-88
Figure 5-20 Potable Storage and Distribution Capital Improvement Projects

List of Appendices

Appendix 5-A Existing Operations Information	.5-A
Appendix 5-B Model Demand Allocation Process Additional Information	.5-B
Appendix 5-C Future Developable Land Buildout Figures	.5-C
Appendix 5-D Fire Hydrant Model Results Table	.5-D
Appendix 5-E Distribution System Assessment Method Additional Information	.5-E
Appendix 5-F Preventative Maintenance Additional Information	. 5-F
Appendix 5-G Pipeline Capital Improvement Project Cost Estimates	.5-G

(THIS PAGE WAS INTENTIONALLY LEFT BLANK)

Abbreviations and Acronyms

Abbreviations and Acronyms

AC	Acre
ACP	Asbestos Cement Pipe
ADD	Average Day Demand
BOPU	Board of Public Utilities
CCWRF	Crow Creek Water Reclamation Facility
CIP	Capital Improvement Plan
CIPL	Cast Iron Lined Pipe
CIPU	Cast Iron Unlined Pipe
CIS	Customer Information System
City	City of Cheyenne
CMMS	Computerized Maintenance Management System
CoF	Consequence of Failure
DBPs	Disinfection By-products
DIP	Ductile Iron Pipe
DMA	District Metering Area
EAM	Enterprise Asset Management
EPA	Environmental Protection Agency
gal	Gallon
gpcd	Gallons per Capita per Day
GIS	Geographic Information System
GPS	Global Positioning System
gpm	Gallons per Minute
HDPE	High Density Polyethylene Pipe
HDR	HDR Engineering, Inc.
HGL	Hydraulic Grade Line
LoF	Likelihood of Failure

Abbreviations and Acronyms

Master Plans	2013 Cheyenne Water and Wastewater Master Plans					
MDD	Maximum Day Demand					
MG	Million Gallons					
mgd	Million Gallons per Day					
Mn	Manganese					
O&M	Operations and Maintenance					
NRBP	North Range Business Park					
PCCP	Pre-stressed Concrete Cylinder Pipe					
PHD	Peak Hour Demand					
PRV	Pressure Reducing Valve					
PS	Pump Station					
PSV	Pressure Sustaining Valve					
PVC	Polyvinyl Chloride					
RTU	Remote Telemetry Unit					
SCADA	Supervisory Control and Data Acquisition					
SCWSD	South Cheyenne Water & Sewer District					
SP	Steel Pipe					
UDF	Unidirectional Flushing					
UFW	Unaccounted-for Water					
VFD	Variable Frequency Drive					
Volume 2	Volume 2 – Future Capacity Requirements					
Volume 4	Volume 4 – Potable Water Treatment					
Volume 5	Volume 5 – Potable Water Storage and Distribution					
Volume 10	Volume 10 – Information Technology Master Plan					
Warren AFB	F.E. Warren Air Force Base					
WDEQ	Wyoming Department of Environmental Quality					
WTP	Water Treatment Plant					
yr	Year					

5.1 Introduction

5.1 Introduction

This Volume describes the existing potable water storage and distribution facilities for the City of Cheyenne (City) Board of Public Utilities (BOPU) and presents recommendations for improvements due to pipe condition and/or system growth over the three planning periods: near-term (2014-2023), mid-term (2024-2033), and long-term (2034-2063).

Water distribution system modeling provides insight into how potable water is delivered and where there may be areas that have low delivery pressure, cannot provide required fire protection, and/or pipelines that have excessive headloss or flow rate problems. This Volume presents an evaluation of the existing and future potable water distribution system and recommends improvements to eliminate current deficiencies and meet future growth demands. Distribution system performance requirements include providing adequate storage, flow rates, pressure and storage volume for peak hour demands and fire-flow events. The distribution system must also be configured to provide high quality water at all times.

The following items are documented in this Volume:

- Summary of existing system facilities and operation.
- Update of the hydraulic model, including updates to model facilities, allocation of demand, validation using field data, and addition of analysis scenarios.
- Analysis of the distribution system under peak hour demand and fire flow conditions.
- Analysis of the existing and future pressure zones and pressure management recommendations.
- Analysis of existing and future pump station capacities and locations.
- Analysis of existing and future storage capacities and locations.
- Recommendations for system monitoring including flow, level, pressure, and water quality.
- Development of a method for distribution system assessment for rehabilitation and replacement.
- Recommendations for a preventative maintenance plan including asset management, hydrant inspection and flushing, valve inspection and exercising, main break response, backflow prevention inspection, and customer complaint tracking.
- Summary of recommendations for infrastructure improvements, water age, pressure management, system monitoring, distribution assessment, and preventative maintenance.
- Presentation of capital improvement projects with estimated costs for the near-term and mid-term planning periods.

5.1 Introduction

(THIS PAGE WAS INTENTIONALLY LEFT BLANK)

5.2 Existing Distribution System

This section summarizes the existing system including pipelines, pressure zones, pump stations, and storage.

Figure 5-1 shows the existing water service boundary, distribution system, major facilities, and pressure zone boundaries.

5.2.1 Pipelines

The existing distribution system consists of approximately 645 miles of pipeline ranging in size from 2 to 54 inches according to BOPU's December 2012 pipe inventory. Table 5-1 lists the total length of water pipelines by diameter from the pipe inventory and by material and pipe diameter from the geographic information system (GIS) database as of March 2013. The GIS database pipe lengths and materials were used as the basis for hydraulic modeling of the distribution system.

		GIS Database (March 2013)										
Diameter	Pipe Inventory (December 2012)	Polyvinyl Chloride Pipe (PVC)	Steel Pipe (SP)	Ductile Iron Pipe (DIP)	Cast Iron Unlined Pipe (CIPU)	Cast Iron Lined Pipe (CIPL)	Prestressed Concrete Cylinder Pipe (PCCP)	High Density Polyethylene Pipe (HDPE)	Asbestos Mil Wrapped Steel Pipe	Asbestos Cement Pipe (ACP)	Unknown	Total Length (ft)
2"	0	1,444	0	1,973	125	0	0	0	0	0	0	3,543
3"	0	0	0	50	0	0	0	0	0	0	0	50
4"	294,315	52,035	45	40,257	152,334	22,270	0	0	0	0	0	266,941
6"	515,921	64,999	758	189,489	100,701	162,693	0	0	149	0	2,611	521,401
8"	910,772	499,235	1,040	539,215	47,237	150,174	0	4,732	8,099	917	711	1,251,361
10"	51,323	18,775	25	47,835	3,028	8,980	0	0	0	0	0	78,643
12"	312,965	169,778	133	104,558	22,502	21,532	0	0	0	2,703	0	321,206
14"	31,258	463	0	7,974	7,613	325	0	0	0	0	0	16,375
16"	38,588	4,415	18,714	35,611	3,786	6,852	304	0	0	0	240	69,922
18"	8,423	0	0	581	2,493	1,489	0	0	0	0	0	4,563
20"	47,940	1,607	0	6,864	2,094	0	6,727	0	0	0	0	17,291
24"	870,835	3,890	17	72,218	48	641	27,725	0	0	347	0	104,886
30"	291,533	5,965	190	20,710	16,942	2,581	20,782	0	0	0	0	67,170
36"	18,283	0	115	24,600	2,062	0	0	0	0	0	0	26,777
42"	12,900	0	15,200	0	0	0	0	0	0	0	0	15,200
54"	0	0	0	0	272	206	0	0	0	0	0	478
Total	3,405,056	822,606	36,239	1,091,933	361,237	377,743	55,538	4,732	8,248	3,967	3,562	2,765,805

Table 5-1 Water Pipelines by Material and Diameter

Last Updated: 9/27/2013

2013 Water and Wastewater Master Plans

5.2.2 Pressure Zones

Zones are used to manage service pressures. If pressures are too low, customers have inadequate pressure for normal operation of water fixtures. Pressures that are too high, however, increase the water usage and the risk of damaging interior piping and fixtures. In addition, high pressures are often associated with increased distribution system pipeline breakage and leakage.

BOPU serves the majority of existing customers by gravity flow from King I Reservoir, King II Reservoir via the King Intertie, and Round Top Reservoir. Some customers in the northwest part of the service area require pumping to provide adequate pressures, and customers on the east side of the City are served through pressure regulating valves (PRVs) to reduce the system pressures. Existing potable water pressure zones are summarized in Table 5-2.

Zone	Hydraulic Grade (ft)	Service Elevations (ft)
City	6,363	6,011 - 6,225
Deer Avenue	6,384	6,245 – 6,153
Dell Range	6,268	6,123 – 5,969
Monterey Heights	6,426	6,263 – 6,170
North Range Business Park	6,488	6,296 – 6,228
Sun Valley	6,236	6,064 – 5,901
Swan Ranch	6,477	6,377 – 6,173
The Pointe	6,423	6,259 – 6,154
Western Hills	6,420	6,255 – 6,188

Table 5-2Potable Water Pressure Zones

5.2.3 Pump Stations

The existing distribution system includes six pump stations. Although all of the pump stations serve similar elevations in the northern portion of the service area, they are operated as separate pressure zones and are not hydraulically connected due to topography limitations or closed isolation valves. The Deer Avenue pump station feeds its pressure zone as well as the Western Hills pump station suction line. All of the other connections between Deer Avenue and Western Hills pressure zones are normally closed. All of the connections between The Pointe and Monterey Heights pressure zones are normally closed. Table 5-3 summarizes existing potable water pump stations.

		Pumps			Pumping Capacity		
Name	Number	Rated Capacity (gpm)	Rated Head (ft)	Total (gpm)	Firm (gpm)		
Buffalo Ridge	1	1,750	107	1,750	0		
Deer Avenue	1 to 4	760	89	3,040	2,280		
	1 to 2	480	160	960	1,460		
Monterey Heights	3	500	225	500			
	4	890	180	890			
North Dango Rusinoss Dark	1 to 2	300	293	600	1,800		
North Kange Dusiness Fark	3 to 5	600	293	1,800			
Western Hills	1 to 5	640	165	3,200	2,560		
The Dointe	1	263.5	127.5	263.5	1 162 5		
	2 to 4	450	210	1,350	1,103.5		

Table 5-3Existing Potable Water Pump Station Data

5.2.4 Potable Water Storage

The existing distribution system includes several potable water storage facilities. King II Reservoir provides chlorine contact time for the Sherard Water Treatment Plant (WTP) and groundwater from the Happy Jack, Borie, and Bell well fields. It is located at a higher elevation than the existing City Pressure Zone so it can distribute water as needed to both King I and Round Top Reservoirs (to Round Top Reservoir via the King Intertie). These latter two reservoirs float at the hydraulic grade line (HGL) of the City Pressure Zone and provide the majority of operational storage for the City.

Buffalo Ridge Reservoir is located in the north end of the distribution system in the area of Storey Boulevard and Converse Avenue. It is located at an elevation slightly below the City Pressure Zone HGL. In order to effectively use this volume for stored water, BOPU added a booster pump station at the Buffalo Ridge Reservoir that pumps water out of the tank to the City Pressure Zone HGL. The pumps are manually operated by Sherard WTP staff to help meet peak demands and to cycle water out of the reservoir into the distribution system to prevent water from becoming too old in the reservoir.

Swan Ranch I Reservoir is a newer reservoir that was built with the distribution system within the Swan Ranch development area. This reservoir is currently fed by a well and provides fire flow storage. In the near-term, a pump station will be constructed to feed this reservoir from the City Pressure Zone. Table 5-4 summarizes information on the existing potable water storage facilities.

Name	Total Volume (MG)	Effective Volume (MG)	Equivalent Diameter (ft)	Base Elevation (ft)	Overflow Elevation (ft)	Depth (ft)
Buffalo Ridge Reservoir	5	5	111	6,248.0	6,310.0	64.6
King I Reservoir	5	5	234	6,350.0	6,365.5	15.5
King II Reservoir ⁽¹⁾	15	7.5	294	6,356.0	6,385.5	29.5
Round Top Reservoir ⁽²⁾	11	10.75	306	6,343.5	6,363.7	20.0
Swan Ranch I Reservoir	0.5	0.5	43	6,347.0	6,477.0	40.0
Total Storage	36.5	28.75	-	-	-	-

 Table 5-4

 Existing Potable Water Storage Facilities

1. 7.5 MG of storage volume in King II is reserved for disinfection contact time.

2. 0.25 MG of storage volume in Round Top is reserved for disinfection contact time.

5.3 Model Update and Validation

BOPU had already created a hydraulic water model using the GIS-based InfoWater software (Version 10.0 Update 2) by Innovyze. HDR utilized the existing hydraulic model as a basis of analysis for this study. The existing version of the InfoWater model was updated with 2012 demands and current operational procedures.

5.3.1 System Components

The hydraulic model contains all the distribution system reservoirs, pump stations, and PRVs. The model includes 448 miles of distribution piping which is approximately 86% of the total piping in the system. Piping less than 4" inches and mains serving individual customers are not included in the model as they do not significantly impact the hydraulics of the distribution system. **Appendix 5-**A contains the existing operations information including pump curves and PRV settings used during model development and validation.

Hazen-Williams' Numbers

The distribution system model was run using Hazen-Williams' Equation for pressurized pipes to calculate headloss in the system.

$$h_1 = 4.727C^{-1.852}d^{-4.871}Lq^{1.852}$$

where:

 h_L = headloss, ft

C = Hazen-William's roughness coefficient

d = Pipe diameter, ft

L = Pipe Length, ft

q = Flow, cfs

Hazen-Williams roughness coefficients were assigned to each type of pipe based on the material and age in the original model received from BOPU. Table 5-5 lists a matrix of roughness coefficients used in the model. These existing roughness coefficients were not modified in the original model as part of this study during the model update or validation phases. For future piping, all proposed piping is assumed to be PVC or SP with a roughness coefficient of 130.

Material / Decade	Asbestos Cement Pipe (ACP)	Cast Iron Pipe Lined (CIPL)	Cast Iron Pipe Unlined (CIPU)	Ductile Iron Pipe (DIP)	High Density Polyethylene (HDPE)	Prestressed Concrete Cylinder Pipe (PCCP)	Polyvinylchloride (PVC)	Steel Pipe (SP)	Transite	Unknown
(Unknown)	100	100	90	100.00	120	100	120	100	100.00	110
1870	-	80	70	-	-	-		80	-	90
1880	-	80	70	-	-	-	-	80	-	90
1890	-	80	70	-	-	-	-	80	-	90
1900	-	80	70	-	-	-	-	80	-	90
1910	-	90	80	-	-	-	-	90	-	90
1920	-	90	80	-	-	-	-	90	-	90
1930	100	90	80	-	-	-	-	90	100	90
1940	100	100	90	-	-	-	-	100	100	100
1950	100	100	90	100	-	100	-	100	100	100
1960	100	100	90	100	-	100	-	100	100	110
1970	100	110	90	110	-	100	120	100	100	110
1980	110	110	90	110	-	110	120	100	110	120
1990	110	-	-	120	120	110	120	100	110	120
2000	-	-	-	120	130	120	130	110	-	120
2010	-	-	-	130	130	120	130	110	-	120

 Table 5-5

 Matrix of Pipe Material, Age and Roughness Coefficients

5.3.2 Water Demand Allocation

Historical consumption data for each meter was used to develop an estimate of the average water usage and the spatial distribution of water usage in the distribution system for the 2013 planning year. Combined consumption data from 2012 was allocated to each model junction that represents the location of one or multiple water meters. Unaccounted for water, estimated to be 7.8% of the metered water consumption, was applied evenly across all model junctions. The 2012 consumption data and estimated unaccounted for water were adjusted globally to equal the water demand projection for year 2013 developed in Volume 2. Table 5-6 lists the water demand projection for year 2013 and future planning years. The average day demand was adjusted with peaking factors listed in Table 5-7 to estimate the maximum day and peak hour demand.

Appendix 5-B includes additional demand allocation information including a workflow on how the existing and future demands were assigned to model junctions.

Final Volume 5 – Potable Water Storage and Distribution

5.3 Model Development and Validation

Year	Planning Period	Average Day (ADD)	Maximum Day (MDD)	Peak Hour (PHD)
2013	Existing	15.7	35.8	65.7
2023	Near-Term	18.0	40.9	74.5
2033	Mid-Term 21.2 47.7		47.7	86.1
2043		24.2	54.0	96.9
2053	Long-Term	27.1	60.1	107.2
2063		29.6	65.3	115.8

 Table 5-6

 Potable Water Demand Projections

Table 5-7					
Potable V	Nater	Peaking	Factors		

Parameter	Normal Users	Large Users				
Average Day						
Demand, gpcd	202	-				
Maximum Day						
Ratio (MDD/ADD)	2.3	1.75				
Demand, gpcd	465	-				
Peak Hour	Peak Hour					
Ratio (PHD/ADD)	4.25	2.25				
Demand, gpcd	859	-				

A portion of the water demand was assigned to new large users scheduled to be online by 2013. These demands were assigned to a single model junction based on the location of the user. The global adjustments of demands to meet does not apply to these new large users but the large user peaking factors presented in Table 5-7 were applied. Table 5-8 lists the average demand associated with each large user.

Table 5-8New Large Users Allocated in the Model

Future Large User	2013 ADD (mgd)
Microsoft	0.2
Swan Ranch	0.1
NCAR	0.2

Future Water Demand Allocation and Fire Flow

The additional future water demand projections were allocated in the model based on analysis of future developable lands and unit demand factors. The unit demand factors were developed by spatially joining the 2012 water demands with the GIS layer of the County's Zoning areas. By dividing the total demand by the number of acres within the total area of each zoning polygon and averaging the unit demands for each zoning type, the overall unit factors were developed to apply to the future developable land. Table 5-9 lists the unit demands for each zoning type. Figure 5-2 shows a map of the future developable areas.

Each of the developable land areas was assigned a percent buildout for each planning period (near-term, mid-term and long-term) based on current and anticipated development plans. Appendix 5-C contains figures showing the assumed percent buildout of developable land areas for each of the planning periods. The following equation was used to calculate future demands for these areas:

Average Day Future Demand (gpd) = Unit Demand Factor (gpd/ac) x Developable Land Area (ac) x Zoning Building Coverage Allowance (%) x Buildout Factor (%)

The total future average day demand was adjusted slightly to match the demand projections for each planning period in Volume 2 as summarized in Table 5-6. The resulting demands were assigned to the nearest junction in the model for each planning period scenario. The peaking factors were used to develop the maximum day and peak hour scenarios from the average day demand allocation.

In addition to water demand, modeled fire flow demands were assigned based on the zoning type overlaying each model junction representing a hydrant. The analyzed fire flow values in Table 5-9 were confirmed by the City's Fire Department.

Figure 5-3 depicts the current zoning information and associated fire flow demands overlaid with the model junctions.

Zoning Code	Zoning Type	Zoning Area (acres)	Percent of Total Area	Fire Flow (gpm)	Assigned Future Unit Demand (gpd/ac)
A-2	Agricultural	75,998	55.8%	500	350
A-1	Agricultural and Rural Residential	15,749	11.6%	500	350
AR	Agricultural Residential	7,381	5.4%	500	350
AD	Airport District	907	0.7%	4,000	N/A
CBD	Central Business District	123	0.1%	3,500	1400
AG	City Agricultural	158	0.1%	1,000	350
СВ	Community Business	2,484	1.8%	3,000	850
Х	Military Public	6,006	4.4%	3,500	N/A
HI	Heavy Industrial	2,256	1.7%	3,500	100
HR	High Density Residential - County	61	0.0%	2,500	1,900
HR-2	High Density Residential Developing	117	0.1%	2,500	1,900
HR-1	High Density Residential Established	223	0.2%	2,500	1,900
LI	Light Industrial	3,477	2.6%	3,500	350
LR	Low Density Residential - County	703	0.5%	750	1,300
LR-2	Low Density Residential Developing	519	0.4%	1,500	1,300
LR-1	Low Density Residential Established	668	0.5%	1,500	1,300
MR	Medium Density Residential - County	1,581	1.2%	750	1,200
MR-2	Medium Density Residential Developing	1,386	1.0%	1,500	1,200
MR-1	Medium Density Residential Established	3,302	2.4%	1,500	1,200
MU	Mixed Use - County	452	0.3%	1,500	500
MUB	Mixed Use Business Emphasis	591	0.4%	2,500	1,000
MUR	Mixed Use Residential Emphasis	107	0.1%	2,500	1,600
NB	Neighborhood Business	211	0.2%	2,500	800
PUD	Planned Unit Development	6,711	4.9%	3,500	1,100
Р	Public	4,908	3.6%	3,000	1,500
	Total	136,079	100.0%	-	-

 Table 5-9

 County Zoning Codes with Unit Water Demands and Fire Flow

Figure 5-2 Future Developable Land Map

F.E. Warren Air Force Base

Water Treatment Plant

Storage Tank

Pump Station

Roads

Creeks Lakes

WTP

 \square

PS

South Cheyenne Water and Sewer District

Volume 5 – Potable Water Storage and Distribution 2013 Water and Wastewater Master Plans

Legend

Volume 5 – Potable Water Storage and Distribution 2013 Water and Wastewater Master Plans

5.3.3 Validation

Model results were validated with the following three data sources:

- Pressure logger data from the 2010 Pressure Management Study collected during the summer and winter of 2009.
- Pressure logger data collected from April and May of 2013 in the Dell Range pressure zone.
- Master meter data from 2012.

Data from these sources was compared with model results to determine if the model was simulating pressures and flow that correspond to actual observations. The locations of each pressure logger and master meter are shown in Figure 5-4. Fire hydrant flow data is recommended for future model validation and calibration as it puts the system under stress conditions to determine how the model responds under peak flow conditions.

2010 Pressure Management Study Data

Five hydrant pressure loggers were purchased from Global Water Instrumentation, Inc. for data collection during this project. The pressure loggers, model PL200-H-2, allow for capturing direct system pressures wherever there is a fire hydrant. Four cycles of summer and winter installations were conducted to collect data for model calibration and high pressure monitoring at select locations throughout the system.

Table 5-10 and Table 5-11 provide a summary of the pressure data collected at each pressure logger during the summer and winter cycles. Simulated pressures from the model are compared with the data collected and the difference between the pressure logger data and the simulated pressures is shown. The data from pressure loggers located in the Dell Range pressure zone have been omitted from this table because the zone was created after the data was collected and the system pressure in the area has changed as a result.

(THIS PAGE WAS INTENTIONALLY LEFT BLANK)

Figure 5-4 **Pressure Logger and Master Meter Map**

Volume 5 – Potable Water Storage and Distribution 2013 Water and Wastewater Master Plans

Table 5-10
Pressure Management Study – Summer Cycle Pressure and Model Results

Logger	Cycle	Data Collection Dates	Address	Pressure Zone	Average Pressure From Study (psi)	Modeled Pressure (psi)	Difference (psi)
HPL2	1	5/13 - 5/27/09	Old Happy Jack Rd and Westland Rd	City	111.5	109.0	-2.4
HPL3	1	5/13 - 5/27/09	HR Ranch and Campstool	Sun Valley	128.0	132.4	4.4
HPL5	1	5/13 - 5/27/09	Storey Blvd and Shaun Ave	City	85.4	81.3	-4.1
HPL2	2	6/2 - 6/16/09	Vandehei Ave and Ranger Dr	Deer Avenue	76.3	68.1	-8.2
HPL3	2	6/2 - 6/16/09	New Bedford Dr and Windsor Blvd	The Pointe	92.0	84.8	-7.2
HPL4	2	6/2 - 6/16/09	Wendy Ln and Miracle Pkwy	The Pointe	121.5	116.0	-5.5
HPL5	2	6/2 - 6/16/09	Horizon Dr and Round Top Rd	NRBP	86.7	92.1	5.4
HPL1	3	6/17 - 6/30/09	9th St and O'Neil Ave	City	135.0	131.1	-3.9
HPL3	3	6/17 - 6/30/09	8th Ave and Snyder Ave	City	93.2	87.0	-6.2
HPL4	3	6/17 - 6/30/09	Gunsmoke Rd and Saddle Ridge Trl	City	108.4	103.0	-5.4
HPL5	3	6/17 - 6/30/09	5th Ave and Alexander Ave	Sun Valley	65.4	75.4	9.9
HPL2	4	7/1 - 7/15/09	Old Happy Jack Rd and Westland Rd	City	115.6	109.0	-6.5
HPL3	4	7/1 - 7/15/09	HR Ranch and Campstool	Sun Valley	127.9	132.4	4.5
HPL5	4	7/1 - 7/15/09	Storey Blvd and Shaun Ave	City	86.4	81.3	-5.1

Logger	Cycle	Data Collection Dates	Address	Pressure Zone	Average Pressure From Study	Modeled Pressure (psi)	Study to Model Difference (psi)
HPL2	1	10/23 - 11/13/09	Old Happy Jack Rd and Westland Rd	City	115.5	106.9	-8.6
HPL3	1	10/23 – 11/13/09	HR Ranch and Campstool	Sun Valley	129.6	132.4	2.8
HPL5	1	10/23 – 11/13/09	Storey Blvd and Shaun Ave	City	89.3	81.3	-8.0
HPL1	2	11/13 – 12/1/09	West Dale and Shadow Mountain Cir	Western Hills	87.6	77.8	-9.8
HPL2	2	11/13 – 12/1/09	Vandehei Ave and Ranger Dr	Deer Avenue	71.5	68.1	-3.4
HPL3	2	11/13 – 12/1/09	Hydrant: 048FH013	Monterey Heights	76	71.8	-4.2
HPL4	2	11/13 – 12/1/09	Wendy Ln and Miracle Pkwy	The Pointe	122.6	116.0	-6.6
HPL5	2	11/13 – 12/1/09	Horizon Dr and Round Top Rd	NRBP	75.9	92.1	16.2
HPL1	3	12/18/09 – 1/4/10	9th St and O'Neil Ave	City	146.9	131.1	-15.8
HPL3	3	12/18/09 – 1/4/10	8 th Ave and Snyder Ave	City	99.9	87.0	-12.9
HPL4	3	12/18/09 – 1/4/10	Gunsmoke Rd and Saddle Ridge Trl	City	113.5	103.0	-10.5
HPL5	3	12/18/09 – 1/4/10	5th Ave and Alexander Ave	Sun Valley	70	75.4	5.4

 Table 5-11

 Pressure Management Study – Winter Cycle Pressure and Model Results

For most of the data records, the difference between the pressure logger data and the simulated pressure is greater than 5 psi. In some of the records from data collected in the winter, the difference exceeds 10 psi. The exact reasons why many data records have discrepancies with the hydraulic model is unknown. Possible explanations are provided below.

First, the pressure loggers may contain inaccurate data. HDR cited that pressure loggers provide inconsistent data during periods of cold temperatures or storm events (HDR, 2010).

Second, reservoir levels, pump operation (flow and output pressure), and master meter supervisory control and data acquisition (SCADA) data was not available to be reviewed review for the periods in which the pressure data was collected. Typical reservoir operation levels, pump operation, and the system demands were assumed based on an average day demand condition (ie. reservoir levels are not drawn down, pump operation based on variable frequency drive (VFD) settings provided by BOPU, and the demand in the system equals average day demand for predicted for 2013). Any of these parameters can translate into differences in system pressures as conditions change. The system operation should be verified for the periods of the pressure data collection.

And third, the elevation of each pressure logger was not provided. The elevations of model junctions that represent hydrants in the model were estimated from GIS 2' foot contour data. There is a margin of error for the accuracy of the GIS contours and the actual elevation of the pressure logger may differ from the estimated elevation in the model. For some of the records, the hydraulic grade calculated by adding the pressure recorded at the pressure logger and the estimated elevation of the hydraut from the model equated to a hydraulic grade that exceeded the overflow of a reservoir or the VFD output pressure setting for a pump station. For these cases, a possible explanation is the assumed elevation of the hydrant is not correct. The elevation of each pressure logger location should be verified with a very accurate handheld global positioning system (GPS) unit or lidar ground elevation plus the height to the hydrant nozzle.

For these reasons, the data from the 2010 pressure management study did not provide a consistent set of data with which to validate the model. Without additional data and verification of system operation, it is not possible to determine the source of the inconsistencies between the pressure logger data and the hydraulic model.

Dell Range Pressure Logger Data from 2013

Five pressure loggers were connected to hydrants in the Dell Range pressure zone. The data collected is listed in Table 5-12 and compared with simulated pressures in the model. Each pressure logger location is shown in Figure 5-4.

Hydrant with Pressure Logger	Cycle	Data Collection Dates	Pressure Zone	Average Pressure from Loggers (psi)	Modeled Pressure (psi)	Difference (psi)
FH041	1		City	86.5	95.9	9.4
FH059	1	4/11 - 5/2/13	Dell Range	92.9	91.9	-1.0
FH138	1		Dell Range	109.8	110.3	0.5
FH014	1	0/2/10	Dell Range	111.7	112.7	1.0
FH010	1		Dell Range	111.0	111.8	0.8
FH041	2		City	83.5	95.9	12.4
FH059	2	5/2 - 5/30/13	Dell Range	91.3	91.9	-0.6
FH138	2		Dell Range	103.3	110.3	7.0
FH059	2		Dell Range	91.3	91.9	0.6
FH138	2		Dell Range	103.3	110.3	7.0

 Table 5-12

 Pressure Logger Data Collection in April and May 2013 and Model Results

Most of the data collected at these locations were consistent with pressures simulated in the model. The pressure logger located in the City zone on hydrant FH041 was inconsistent with model simulated pressures. One possible explanation for the inconsistency is the elevation of the pressure logger is different from the estimated elevation of the hydrant in the model.

Master Meter Data from 2012

The master meter and reservoir levels from SCADA data from 2012 were also used to validate the model. Table 5-13 and Table 5-14 lists selected events that approximated a maximum day or average day demand condition. Each model simulation had the total demand and reservoir levels adjusted to match the SCADA data for each event. The operation of the Buffalo Ridge pump station and the "X" control valve were set according to the operation reported in the SCADA data. Each master meter location is shown in Figure 5-4.

	6/18/12 8:00 PM			7/1/12 8:00 PM			8/18/12 7:00 PM		
Master Meter Location	Master Meter	Model	Diff.	Master Meter	Model	Diff.	Master Meter	Model	Diff.
	Flow	(mgd)	%	Flow	(mgd)	%	Flow	(mgd)	%
System Demand	43.6	43.4	-1%	39.1	39.0	0%	29.0	28.9	0%
1- 30" Hynds Line	10.5	11.4	8%	9.8	10.4	6%	7.5	7.6	1%
2 - 24" WH Base	6.5	4.5	-31%	5.9	3.9	-34%	5.0	3.5	-30%
3 - 24" Round Top to Town	4.1	4.1	-1%	3.6	3.4	-5%	3.2	2.7	-16%
4 - 30" City Base	11.1	14.3	29%	9.4	13.1	40%	7.1	10.0	41%
5 - 30" WH Base	11.3	9.0	-20%	10.2	7.7	-24%	8.4	7.0	-17%
6 - 30" Round Top	8.0	9.5	18%	7.0	8.0	15%	6.2	6.2	1%
7 - 42" Southern Main	1.0	1.3	25%	1.1	1.2	11%	0.9	0.9	-8%
8 - 30" Round Top Influent	0.0	0.0		0.0	0.0		0.0	0.0	
9 - 36" Intertie	15.7	14.3	-9%	14.3	13.3	-7%	10.3	11.6	13%
	Flow	(gpm)	%	Flow	(gpm)	%	Flow	(gpm)	%
10 - Buffalo Ridge	2,155	1,980	-8%	1,985	1,922	-3%	0	0	

 Table 5-13

 Master Meter SCADA Data – Peak Hour Comparison

	4/21/12 2:00 PM			9/30/12 9:00 AM			12/2/12 3:00 PM		
Master Meter Location	Master Meter	Model	Diff.	Master Meter	Model	Diff.	Master Meter	Model	Diff.
	Flow	(mgd)	%	Flow	(mgd)	%	Flow	(mgd)	%
System Demand	16.0	15.9	-1%	13.5	13.0	-3%	12.0	11.6	-4%
1- 30" Hynds Line	3.6	4.1	15%	3.6	3.1	-12%	3.7	2.7	-28%
2 - 24" WH Base	1.9	1.2	-39%	2.3	1.7	-28%	1.6	1.5	-11%
3 - 24" Round Top to Town	2.8	2.5	-11%	0.9	0.8	-18%	2.2	0.6	-75%
4 - 30" City Base	3.2	4.7	45%	3.2	4.2	32%	2.7	3.8	40%
5 - 30" WH Base	3.7	2.4	-34%	3.6	3.3	-10%	3.0	2.9	-3%
6 - 30" Round Top	5.5	5.8	5%	1.8	1.5	-17%	4.4	1.1	-75%
7 - 42" Southern Main	0.8	0.8	7%	0.8	0.7	-8%	0.9	0.7	-24%
8 - 30" Round Top Influent	7.6	8.3	9%	2.3	2.0	-13%	4.8	2.3	-53%
9 - 36" Intertie	8.5	8.3	-3%	9.4	8.9	-6%	5.4	8.8	62%
	Flow	(gpm)	%	Flow	(gpm)	%	Flow	(gpm)	%
10 - Buffalo Ridge	1,952	1,862	-5%	0	0		0	0	

Table 5-14
Master Meter SCADA Data – Average Day Comparison

The following observations were made after comparing the SCADA data and the model simulations results.

- 30" Hynds Line The SCADA data and model results are consistent for the flow through the 30" Hynds Line meter. The records for the three events approximating peak demand conditions are within 10% of the modeled results. During an average day demand condition, the difference between the SCADA data and the model results is greater than 10%.
- 24" WH Base, 30" WH Base The model consistently under predicts the flow through the WH base meters and over predicts the flow through the 30" City Base meter. All three meters feed the northern portion of the distribution system and the cause of the imbalance in flow between the three meters is unknown. This imbalance occurred in the 2003 Master Plan hydraulic model as well. The meters on these lines should be recalibrated and the area reevaluated to determine the cause of the flow difference.
- 24" Round Top to Town, 30" Round Top The flow from Round Top is recorded by these two meters. The data is relatively consistent with the model simulations. While the percent difference is as great as 18% during the peak demand conditions, the actual difference in flow is within 2 mgd.

5.3 Model Development and Validation

- 42" Southern Main The flow through this meter is 1.3 mgd at its highest value. The simulated flow in the model is within 0.3 mgd of the SCADA data. The simulated flows are consistent with the SCADA data.
- 36" Intertie The simulated flow through the 36" intertie is within 15% of SCADA data during the peak demand conditions. For the average day conditions, the flow is also consistent with the exception of the 12/2/12 event.
- Round Top Influent The simulated flow in the model is consistent with the master meter recording the influent flow to the Round Top reservoirs. During the peak demand conditions, there is no flow into Round Top. All flow is divert through the "X" control structure and bypasses Round Top. During the average demand conditions, the reservoir is able to fill, and the model simulated flow rates are consistent with the master meter data.
- Buffalo Ridge The master meter records flow into and out of the Buffalo Ridge Reservoir. Positive values correspond to when the Buffalo Ridge pump station is pumping out of the reservoir. When values are zero, the reservoir is closed and the reservoir is neither filling nor being pumped into the distribution system. The modeled flow rate through the pump station is consistent with the master meter data.

Validation Summary and Recommendations

In general, the model is in a condition adequate for planning level analysis. The settings for pumps stations, PRVs, and reservoirs levels are all assigned based on current system operational information. Pipe roughness is assumed based on the pipe age and material which is adequate for the purpose of this analysis. Hydrant flow tests may be conducted in the future to further refine the roughness coefficients assigned to the pipes in the model and to validate model performance for high stress conditions. Operational data from the SCADA system should be reviewed during the periods when pressure logger data was collected to verify the system operation. Also, the elevations of the pressure logger locations should be verified to ensure that they correlate to elevations in the model.

5.4 Distribution System Analysis

5.4.1 Modeling Scenarios

In accordance with Wyoming Department of Environmental Quality (WDEQ) Water Quality Rules and Regulations Chapter 12, Section 14 (b) (i), distribution systems shall be designed to maintain a minimum pressure of 20 psi (138 kPa) at ground level at all points in the distribution system under all conditions of flow. The City of Cheyenne desires to maintain a minimum service pressure of 35 psi (207 kPa) which is the minimum pressure utilized for the system analysis. Under peak hour demand (PHD) conditions, this minimum pressure must be maintained with the equalizing and operational storage depleted in the reservoirs. Under fire flow conditions, this minimum pressure must be maintained under maximum day demand (MDD) conditions with equalizing, operational, and fire flow storage depleted. If these criteria could not be met as demonstrated by the model, improvements were identified through an iterative trial-and-error process, and implemented until pressure criteria could be satisfied with a minimum of pipe and facility additions.

Steady state hydraulic analyses were completed for each pressure zone for existing (2013), near-term (2023), mid-term (2033), and long-term (2063) demand conditions. These analyses considered peak hour demand and fire flow demand (MDD plus fire flow) conditions. Table 5-15 describes the modeling scenarios conducted, and the sequence within which they were performed. The results of the peak hour and fire flow analyses are described in greater detail below.

Table 5-15 Modeling Scenarios

Description	Demand	Purpose
Existing (2013) Year Peak Hour	Existing (2013) Peak Hour Demand	Evaluate existing system performance
Existing (2013) Year Fire Flow	Existing (2013) Maximum Day Demand plus fire flow	Evaluate existing system performance
Near-Term (2023) Peak Hour	Near-Term (2023) Peak Hour Demand	Evaluate system performance and develop CIP for peak hour conditions
Near-term (2023) Fire Flow	Near-Term (2023) Maximum Day Demand plus fire flow	Evaluate system performance and develop CIP for Plan Year 2023 fire flow conditions
Mid-term (2033) Peak Hour	Mid-term (2033) Peak Hour Demand	Evaluate system performance and develop CIP for peak hour conditions
Mid-term (2033) Fire Flow	Mid-term (2033) Maximum Day Demand plus fire flow	Evaluate system performance and develop CIP for Plan Year 2033 fire flow conditions
Long-term (2063) Peak Hour	Long-term (2063) Peak Hour Demand	Evaluate system performance and develop CIP for peak hour conditions
Long-term (2063) Fire Flow	Long-term (2063) Maximum Day Demand plus fire flow	Evaluate system performance and develop CIP for Plan Year 2063 fire flow conditions

5.4.2 Peak Hour Analysis Results

The simulated pressures during a peak hour demand condition are depicted in Table 5-16 through Table 5-19. Each table includes the pressure recorded at a single junction in the model. New pressure zones that would be created by proposed pressure management improvements and future boosted pressure zones are included in the tables in subsequent planning years.

Figure 5-5 through Figure 5-8 depict the system pressures graphically in the system. Junctions with pressure less than 35 psi are labeled on the figures.

Junctions in close proximity to the Buffalo Ridge Reservoir and King I, II and Round Top Reservoirs are omitted from the evaluation, as there are no customer meters near these junctions and the available pressure is less than 35 psi during static conditions. The evaluation focuses on pressure in the distribution system that is affected by demand conditions and water main friction losses.

Pressure Zone	<35 psi	35-60 psi	60-100 psi	>100 psi
City	385	2820	2897	0
Western Hills	0	0	199	5
Monterey Heights	0	2	206	21
Deer Avenue	0	4	98	0
The Pointe	0	15	282	29
Dell Range	0	38	1542	9
Sun Valley	0	7	1186	661
North Range Business Park	0	8	68	35
Swan Ranch	0	103	53	51
Total	385	2997	6531	811

Table 5-162013 Junction Pressure by Pressure Zone during Peak Hour Demand

Table 5-17

2023 Junction Pressure by Pressure Zone during Peak Hour Demand

Pressure Zone	<35 psi	35-60 psi	60-100 psi	>100 psi
City North	23	1186	1275	6
Western Hills	0	0	199	5
Monterey Heights	0	2	207	21
Deer Avenue	0	2	97	3
The Pointe	0	18	289	18
Dell Range	0	30	1503	47
North East	0	0	4	0
Sun Valley	0	2	1150	709
City Central	0	107	3037	139
North Range Business Park	0	8	70	33
City South	1	170	165	15
Swan Ranch	1	103	37	65
Total	25	1628	8033	1061

Pressure Zone	<35 psi	35-60 psi	60-100 psi	>100 psi
City North	66	1406	1015	4
Western Hills	0	0	199	5
Monterey Heights	0	2	207	21
Deer Avenue	0	3	96	3
The Pointe	0	24	283	18
Dell Range	0	39	1531	10
North East	1	5	7	0
Sun Valley	0	8	1173	685
South East	1	1	0	0
City Central	0	170	3041	72
Chalk Bluff	0	0	1	2
North Range Business Park	0	8	71	32
City South	1	262	81	13
Swan Ranch	1	105	44	61
Total	70	2033	7749	926

Table 5-18					
2033 Junction Pressure by Pressure Zone during Peak Hour Demand					

Table 5-19

2063 Junction Pressure by Pressure Zone during Peak Hour Demand

Pressure Zone	<35 psi	35-60 psi	60-100 psi	>100 psi
City North	268	1456	767	0
Western Hills	0	0	199	5
Monterey Heights	1	2	206	21
Deer Avenue	0	7	92	3
The Pointe	4	30	279	12
Dell Range	1	67	1512	0
North East	8	7	0	0
Sun Valley	0	8	1229	631
South East	2	0	0	0
City Central	0	277	2980	26
Chalk Bluff	0	6	5	0
North Range Business Park	0	8	72	31
City South	1	313	31	12
Swan Ranch	1	113	49	48
Total	286	2294	7421	789

Summary of Observations

- In the existing scenario, an area south of I-80 between Greeley Highway and I-25 experiences low pressures during peak hour demand conditions. By 2023, the implementation of the Southern Water Transmission Main Phases I, II, and III will increase the pressures in the area.
- North of Storey Boulevard in the City pressure zone, there are areas of low pressure during peak hour demand conditions. The areas of low pressure are due to the friction losses in the distribution mains conveying water from Round Top and King II Reservoirs and the relative high elevation of the area. Buffalo Ridge pump station is designed to boost pressures in the northern distribution system, but the capacity limits flow to provide only a portion of the peak hour demand in the area. By 2063, the number of junctions with pressure less than 35 psi during a peak hour demand will increase. Potential improvements may include expanding the Monterey Heights and Pointe pressure zones, reducing conveyance friction losses by increasing the capacity of the 24" distribution main along Storey Boulevard, or increasing the capacity of the Buffalo Ridge pump station.
- Along Panorama Lane, there is an area of low pressure during peak hour demand conditions. Friction losses in the distribution water mains that convey flow from Round Top and King II Reservoirs may cause pressures less than 35 psi in the area. The pressure may be improved by expanding the Northeast pressure zone to serve the customers in the area. Pressures could also be improved by increasing the capacity of the Buffalo Ridge pump station or increasing the capacity of the 24" distribution main along Storey Boulevard. A pressure sustaining valve (PSV) from the Dell Range pressure zone could be installed to provide a redundant supply to this area in case the main City pressure supply is temporarily disconnected.

(THIS PAGE WAS INTENTIONALLY LEFT BLANK)

- Peak Hour Pressure (psi)
- <35 • 35 - 60 0
- 60 100
- >100
- Storage Tank PRV Water Main

Roads

Page 5-31

1 inch = 1.5 miles N

- Peak Hour Pressure (psi)
- <35 35 - 60 0
- 60 100
- >100
- PS Pump Station
 - Storage Tank PRV

Water Main

North Range Business Park Northeast Southeast Sun Valley Swan Ranch The Pointe Western Hills

Figure 5-6 2023 Peak Hour Pressure Map

- Peak Hour Pressure (psi)
- <35 • 35 - 60
- 60 100
- >100
- PS Pump Station
 - \bigcirc Storage Tank PRV
 - Water Main

Figure 5-7 2033 Peak Hour Pressure Map

- Peak Hour Pressure (psi)
- <35 • 35 - 60
- 60 100
- >100
- WTP Water Treatment Plant PS Pump Station
- \bigcirc Storage Tank PRV
 - Water Main

Roads

North Range Business Park Northeast Southeast Sun Valley Swan Ranch The Pointe Western Hills

N

Figure 5-8 2063 Peak Hour Pressure Map

5.4.3 Fire Flow Analysis Results

The available fire flow was simulated in the hydraulic model for each planning horizon during a maximum day demand condition. The fire flow goal for each hydrant is assigned based on the adjacent zoning type. Table 5-20 contains a list of the fire flow goal for each zoning type. A summary of the fire flow results are shown in Table 5-20 through Table 5-23 for each scenario. The tables provide the summation of every hydrant according to the available fire flow as a percentage of the fire flow goal and the pressure zone containing the hydrant.

Figure 5-9 through

Figure 5-12 depict the fire flow results graphically. Each figure depicts hydrants where the available fire flow is less than the fire flow goal. Appendix 5-D contains a table with fire hydrant model results for each of the planning periods.

Dracoura Zana	% Fi	re Flow Goal	Available (n	lable (number of hydrants)			
Pressure Zone	<25%	25-50%	50-75%	75-100%	100%	Total	
City	41	122	262	259	951	1635	
Western Hills	0	0	0	0	58	58	
Monterey Heights	0	0	2	24	42	68	
Deer Avenue	0	0	0	2	26	28	
The Pointe	0	3	14	65	28	110	
Dell Range	2	2	9	18	415	446	
Sun Valley	2	20	10	37	513	582	
North Range Business Park	0	0	1	12	21	34	
Swan Ranch	3	27	27	17	12	86	
Total	48	174	325	434	2066	3047	

Table 5-202013 Fire Flow Availability from Hydrant Summary Table

Final Volume 5 – Potable Water Storage and Distribution

5.4 Distribution System Analysis

	% Fire Flow Goal Available (number of hydrants)					
Pressure Zone	<25%	25-50%	50-75%	75-100%	100%	Total
City North	12	35	78	75	454	654
Western Hills	0	0	0	0	58	58
Monterey Heights	0	0	0	23	46	69
Deer Avenue	0	0	0	1	27	28
The Pointe	0	3	10	48	49	110
Dell Range	2	2	9	17	415	445
Sun Valley	0	4	10	40	528	582
City Central	34	73	136	102	535	880
North Range Business Park	0	0	24	8	2	34
City South	1	1	3	19	79	103
Swan Ranch	0	8	17	12	47	84
Total	49	126	287	345	2240	3047

Table 5-212023 Fire Flow Availability from Hydrant Summary Table

Table 5-22	
2033 Fire Flow Availability from Hydrant Summary Table	e

D	% Fire Flow Goal Available (number of hydrants)					
Pressure Zone	<25%	25-50%	50-75%	75-100%	100%	Total
City North	12	35	81	76	450	654
Western Hills	0	0	0	0	58	58
Monterey Heights	0	0	0	24	45	69
Deer Avenue	0	0	0	1	27	28
The Pointe	0	3	12	60	35	110
Dell Range	2	2	9	17	415	445
Sun Valley	0	4	9	38	531	582
City Central	29	70	146	105	530	880
North Range Business Park	0	0	30	4	0	34
City South	1	1	9	29	63	103
Swan Ranch	0	11	16	11	46	84
Total	44	126	312	365	2200	3047

	% Fire Flow Goal Available (number of hydrants)					
Pressure Zone	<25%	25-50%	50-75%	75-100%	100%	Total
City North	13	43	77	88	433	654
Western Hills	0	0	0	0	58	58
Monterey Heights	0	0	1	24	44	69
Deer Avenue	0	0	0	1	27	28
The Pointe	0	5	14	79	12	110
Dell Range	2	2	9	17	415	445
Sun Valley	0	4	9	39	530	582
City Central	30	73	145	109	523	880
North Range Business Park	0	0	30	4	0	34
City South	1	1	13	27	61	103
Swan Ranch	1	12	18	7	46	84
Total	47	140	316	395	2149	3047

Table 5-232063 Fire Flow Availability from Hydrant Summary Table

Summary of Observations

- In 2013, approximately 68% of all hydrants have an available fire flow that exceeds the fire flow goal.
- A majority of the hydrants that have an available fire flow less than a large fire flow goal (2,500 gpm or more) are located on 4" or 6" waterlines. The small diameter water lines are not sufficiently sized to convey the fire flow goal. Most of these hydrants are located in the downtown area of the system. The replacement of small diameter water mains would increase the fire flow to these hydrants.
- Where a single hydrant cannot produce the full fire flow goal, multiple hydrants are available to produce the full fire flow goal.
- All new water lines and hydrants installed in BOPU's distribution system are assumed to be designed to provide the applicable fire flow goal.
- In the Swan Ranch pressure zone, the existing fire flow is limited by a dead end 12" water main to the north portion of the zone. Installing additional pipe to loop this dead end pipeline and the proposed Swan Ranch pump station would increase fire flow. Fire flow in the southern portion of the pressure zone is limited by the elevation of the hydrants. No improvement is recommended.
- The Southern Water Transmission Main improves fire flow to portions of BOPU and Sun Valley pressure zones south of I-80.

- The available fire flows in hydrants along Panorama Lane are limited by a dead-end 8" water main. Installing additional pipe to loop this dead end pipeline will improve fire flow to the hydrants. A PSV from the Dell Range pressure could provide flow during a fire flow condition. Also, the implementation of the Northeast pump station could boost pressures in the area by transferring the piping along Panorama Lane into the proposed North East pressure zone.
- The available fire flow from hydrants in the Monterey and Pointe pressure zones is limited by the capacity of the pump station, high elevations in the zone, and or large fire flow goals for some hydrants that exceed 2,500 gpm. The capacity of the pump station and the size of the water lines may not be sufficient to satisfy the large fire flow goals.

Page 5-39

Figure 5-9 Existing Fire Flow Map

Page 5-40

Figure 5-10 2023 Fire Flow Map

Last Updated: 9/27/2013

Figure 5-11 2033 Fire Flow Map

Last Updated: 9/27/2013

Figure 5-12 2063 Fire Flow Map

5.4.4 Pressure Zone Analysis and Pressure Management

The water service elevations vary across the distribution system from 6,377 to 5,901 feet. BOPU has 9 pressure zones in the system. As the distribution system grows, new pressure zones have been identified to reduce high pressures or to pump to serve additional high elevation areas.

Figure 5-13 depicts the future pressure zone boundaries and the PRVs and pump stations that would transfer water between zones. The future pressure zones will increase to 14 and the following are descriptions of the new pressure zones.

City North (2016) – The City North pressure zone would be created by closing isolation valves and the installation of PRVs associated with the Pressure Management Phase II - City North/Central/South Zones improvement scheduled to be implemented in 2016. The improvements would divide the City pressure zone into three parts. The City North pressure zone would operate at the same hydraulic grade as the City pressure zone which is based on the operating levels in the King II and Round Top reservoirs.

City Central (2016) – The City Central pressure zone would be created by closing isolation valves and the installation of PRVs associated with the Pressure Management Phase II - City North/Central/South Zones improvement scheduled to be implemented in 2016. The improvements would divide the City pressure zone into three parts The PRVs would reduce pressures in the City Central zone lower than the hydraulic grade of the existing City pressure zone. This would reduce the pressure in a high pressure area identified in the 2010 Pressure Management Study (HDR, 2010).

City South (2016) – The City South pressure zone would be created by closing isolation valves and the installation of PRVs associated with the Pressure Management Phase II - City North/Central/South Zones improvement scheduled to be implemented in 2016. The improvements would divide the City pressure zone into three parts. The hydraulic grade in the City South pressure zone would be determined by the King II and Southeast storage reservoirs. The pressure zone would include a small portion of the existing City pressure zone and expand to cover an area of growth to the south of the City. The boundary of the pressure zone depicted in Figure 5-13 is preliminary and subject to change as development occurs.

Chalk Bluff (2033) – The Chalk Bluff pressure zone would be created by the Chalk Bluff pump station scheduled to be implemented by 2033. The pressure zone was identified to serve an area of growth in a high elevation area in the Southern portion of the distribution system. The proposed Chalk Bluff pump station would provide the hydraulic grade for the proposed pressure zone. By 2063, the Chalk Bluff reservoir would provide the hydraulic grade of the zone when implemented. Elevations in the pressure zone range from 6,150 to greater than 6,300 feet. The boundary of the pressure zone depicted in

Figure 5-13 is preliminary and subject to change as development occurs.

Northeast (2033) – The Northeast pressure zone would be created by the Northern pump station scheduled to be implemented by 2033. The pressure zone was identified to serve an area of growth in the northeast portion of the distribution system. This pump station could also provide pressures to the area along Panorama Lane which is identified for potential fire flow and peak hour pressure deficiencies. The proposed Northern pump station would provide the hydraulic grade of the zone which ranges in elevations from 6,035 to 6,160. No storage reservoir is planned for this pressure zone so the pump station would need to provide both peak hour or maximum day plus fire flow whichever is larger. The boundary of the pressure zone depicted in

Figure 5-13 is preliminary and subject to change as development occurs.

Southeast (2033) – The Southeast pressure zone would be created by the installation of the Southeast pump station scheduled to be implemented by 2033. The pressure zone was identified to serve an area of growth in a high elevation area in the southern portion of the distribution system. The proposed Southeast pump station would provide the hydraulic grade for the proposed pressure zone. No storage reservoir is planned for this pressure zone so the pump station would need to provide both peak hour or maximum day plus fire flow whichever is larger. Elevations in the pressure zone range from 6,100 to greater than 6,200 feet. The boundary of the pressure zone depicted in

Figure 5-13 is preliminary and subject to change as development occurs.

Swan Ranch (2014) – The Swan Ranch pressure zone would be connected to BOPU's distribution system with the implementation of the Swan Ranch pump station scheduled for 2014. There is an existing reservoir that provides the hydraulic grade of the zone. The zone is a high elevation area located along a ridge in the southern portion of the distribution system. The pressure zone would expand to serve areas of new development. The boundary of the pressure zone depicted in

Figure 5-13 is preliminary and subject to change as development occurs.

Figure 5-13 Future Pressure Zone Map

5.5 Pump Station Capacity Analysis

5.5.1 Evaluation Criteria

According to WDEQ Water Quality Rules and Regulations, the maximum pumping capacity in a system shall be provided by a pumping station with the largest pump out of service. For boosted pressure zones without storage, the maximum pumping capacity is defined as the peak hour demand or maximum day demand plus fire flow, whichever is greater.

While these guidelines apply to the design of new pump stations, BOPU has established criteria for the purpose of evaluating the existing pump stations. Each pump station is evaluated based on the ability to provide the peak hour demand with the largest pump out of service. BOPU elects to assume that all pumps would be active for a fire flow scenario. Also, during a fire flow, downstream pressures would lower and the pumps would operate at a higher flow rate on their pump curves providing additional flow capacity beyond the values listed in Table 5-3.

5.5.2 Pump Station Capacity Evaluation

Buffalo Ridge Pump Station

The Buffalo Ridge pump station pumps from the Buffalo Ridge reservoir into BOPU pressure zone. The storage reservoir is below the hydraulic grade of the zone and requires pumping to supply BOPU's distribution system. The pump station consists of 1 pump with a capacity of 1,750 gpm. Installation of an additional pump for redundancy at the pump station is recommended. Without the pump station in operation, the water in the storage reservoir cannot flow into the distribution system under normal conditions.

The peak hour pressure analysis demonstrated that significant friction losses in the distribution piping from Round Top Reservoir and the "X" control vault may occur in the future as demand increases. Increasing the capacity of the pump station can increase the system pressure in the northern portion of the distribution system during peak hour demand conditions.

Deer Avenue Pump Station

The Deer Avenue pump station is the sole source of supply to the Deer Avenue and Western Hills pressure zones. The pump station consists of 4 pumps that have a total capacity of 3,040 gpm and a firm capacity of 2,280 gpm with the largest pump offline. Table 5-24 lists the results of an evaluation of the pump station. Based on the firm capacity, the pump station has sufficient capacity to supply the peak hour demand through the 50-year planning period. Additional fire flow may be provided by operating all pumps or by operating the pumps at a higher flow rate on the pump curves.

The largest fire flow goal in the pressure zone is 3,000 gpm. The firm capacity of the pump station is insufficient for the fire flow goal. Additional flow beyond the firm capacity of the pump station can be provided by operating all pumps and operating the pumps at a higher point on their pump curves while maintaining 35 psi in the pressure zone.

	Year					
	2013	2023	2033	2063		
Projected Population and Demand ⁽¹⁾						
Estimated Population Served	2,479	2,480	2,480	2,868		
Average Day Demand (gpd)	500,818	500,909	501,047	579,250		
Maximum Day Demand (gpd)	1,190,534	1,190,735	1,191,030	1,194,195		
Peak Hour Demand (gpm)	1,580	1,580	1,581	1,584		
Evaluation of Existing Sources						
Available Existing Source (gpm) (2)						
Deer Avenue	2,280	2,280	2,280	2,280		
Total Available Source (gpm)	2,280	2,280	2,280	2,280		
Source Surplus/(Deficiency) (gpm) $^{(3)}$	700	700	699	696		

Table 5-24Pump Station Capacity Analysis for Deer Avenue Zone

Notes:

(1) Projected demands taken from Volume 2. Estimated population served calculated as Average Day Demand / water demand per capita factor (202 gpcd).

(2) Available source assumes largest pump is offline.

(3) Source surplus is the amount of available sources greater than peak hour demand.

During lower demand periods, it may be possible to take the Western Hills or Deer Avenue Pump Station offline to reduce pumping costs. Controls could be added to the pumps to turn them on if the discharge pressure fell below a set point required to maintain a minimum of 35 psi in both pressure zones.

Western Hills Pump Station

The Western Hills pump station is the source of supply for the Western Hills pressure zone. It boosts pressure from the Deer Avenue pump station. During lower demand periods, the pump station could be shut down and Deer Avenue pump station could provide pressure to the Western Hills pressure zone. The pump station consists of 5 pumps that have a total capacity of 3,200 gpm and a firm capacity of 2,560 gpm with the largest pump offline. Table 5-25 lists the results of an evaluation of the pump station. The pump station has sufficient capacity to supply the peak hour demand through the 50-year planning period. Additional fire flow may be provided by operating all pumps or by operating the pumps at a higher flow rate on the pump curves.

The largest fire flow goal in the pressure zone is 1,500 gpm. The firm capacity of the pump station is sufficient to provide the fire flow goal. There are no recommended capacity related improvements to the pump station.

	Year					
	2013	2023	2033	2063		
Projected Population and Demand ⁽¹⁾						
Estimated Population Served	1,653	1,653	1,654	1,914		
Average Day Demand (gpd)	333,878	333,970	334,108	386,643		
Maximum Day Demand (gpd)	793,670	793,871	794,166	797,331		
Peak Hour Demand (gpm)	1,053	1,053	1,054	1,058		
Evaluation of Existing Sources						
Available Existing Source (gpm) (2)						
Western Hills	2,560	2,560	2,560	2,560		
Total Available Source (gpm)	2,560	2,560	2,560	2,560		
Source Surplus/(Deficiency) (gpm) (3)	1,507	1,507	1,506	1,502		

Table 5-25 Pump Station Capacity Analysis for Western Hills Zone

Notes:

 Projected demands taken from Volume 2. Estimated population served calculated as Average Day Demand / water demand per capita factor (202 gpcd).

(2) Available source assumes largest pump is offline.

(3) Source surplus is the amount of available sources greater than peak hour demand.

Monterey Heights

The Monterey Heights pump station is the source of supply to the Monterey Heights pressure zone. The pump station consists of 4 pumps that have a total capacity of 2,350 gpm and a firm capacity of 1,460 gpm with the largest pump offline. Table 5-26 lists the results of an evaluation of the pump station. Based on the firm capacity, the pump station has sufficient capacity to supply the peak hour demand through the 50-year planning period. Additional fire flow may be provided by operating all pumps or by operating the pumps at a higher flow rate on the pump curves.

The largest fire flow goal in the pressure zone is 3,000 gpm. The firm capacity of the pump station is insufficient for the fire flow goal delivered at its design pressure. Additional flow beyond the firm capacity of the pump station can be provided by operating all pumps and operating the pumps at a higher point on their pump curves while maintaining 35 psi in the pressure zone. There are no recommended capacity related improvements to the pump station.

	Year					
	2013	2023	2033	2063		
Projected Population and Demand ⁽¹⁾						
Estimated Population Served	1,420	1,422	1,424	1,661		
Average Day Demand (gpd)	286,934	287,226	287,667	335,606		
Maximum Day Demand (gpd)	682,128	682,768	683,708	693,799		
Peak Hour Demand (gpm)	906	907	908	920		
Evaluation of Existing Sources						
Available Existing Source (gpm) (2)						
Monterey Heights	1,460	1,460	1,460	1,460		
Total Available Source (gpm)	1,460	1,460	1,460	1,460		
Source Surplus/(Deficiency) (gpm) ⁽³⁾	554	553	552	540		

 Table 5-26

 Pump Station Capacity Analysis for Monterey Heights Zone

Notes:

(1) Projected demands taken from Volume 2. Estimated population served calculated as Average Day Demand / water demand per capita factor (202 gpcd).

(2) Available source assumes largest pump is offline.

(3) Source surplus is the amount of available sources greater than peak hour demand.

The Pointe

The Pointe pump station is the source of supply to The Pointe pressure zone. The pump station consists of 4 pumps that have a total capacity of 1,614 gpm and a firm capacity of 1,164 gpm with the largest pump offline. Table 5-27 lists the results of an evaluation of the pump station. With the largest pump out of service and the other pumps operating at the design point, the pump station cannot provide the peak hour predicted from the demand allocation. The projected demand can be satisfied by operating all pumps or by operating the pumps at a higher flow rate on the pump curve.

The largest fire flow goal in the pressure zone is 3,500 gpm. The firm capacity of the pump station is insufficient for the fire flow goal. Additional flow beyond the firm capacity of the pump station can be provided by operating all pumps and operating the pumps at a higher point on their pump curves while maintaining 35 psi in the pressure zone.

There is no recommended capacity related improvements to the pump station. The operation of the pump station should be monitored to determine if an upgrade in the future is necessary to supply the peak hour demands with adequate pressure.

	Year					
	2013	2023	2033	2063		
Projected Population and Demand ⁽¹⁾						
Estimated Population Served	1,881	2,066	2,192	2,643		
Average Day Demand (gpd)	379,901	417,337	442,769	533,884		
Maximum Day Demand (gpd)	902,866	985,170	1,038,402	1,147,839		
Peak Hour Demand (gpm)	1,201	1,299	1,362	1,490		
Evaluation of Existing Sources						
Available Existing Source (gpm) (2)						
The Pointe	1,164	1,164	1,164	1,164		
Total Available Source (gpm)	1,164	1,164	1,164	1,164		
Source Surplus/(Deficiency) (gpm) ⁽³⁾	-37	-136	-198	-326		

Table 5-27Pump Station Capacity Analysis for The Pointe Zone

Notes:

(1) Projected demands taken from Volume 2. Estimated population served calculated as Average Day Demand / water demand per capita factor (202 gpcd).

(2) Available source assumes largest pump is offline.

(3) Source surplus is the amount of available sources greater than peak hour demand.

North Range Business Park

The North Range Business Park pump station is the source of supply to the North Range Business Park pressure zone. The pump station consists of 5 pumps that have a total capacity of 2,400 gpm and a firm capacity of 1,800 gpm with the largest pump offline. Table 5-28 lists the results of an evaluation of the pump station. Based on the firm capacity, the pump station has sufficient capacity to supply the peak hour demand through the 20-year planning period. By 2063, the firm capacity of the pump station is not sufficient to supply the peak hour demand. The projected demand could be satisfied by operating all pumps, operating the pumps at a higher flow rate on the pump curve, and or increasing the capacity of the pump station.

The fire flow goal in the pressure zone is 3500 gpm. The firm capacity of the pump station is insufficient for the fire flow goal. Additional flow beyond the firm capacity of the pump station can be provided by operating all pumps and operating the pumps at a higher point on their pump curves while maintaining 35 psi in the pressure zone. There are also two pressure sustaining valves that allow flow into the pressure zone during a fire flow.

There is no recommended capacity related improvements to the pump station. The operation of the pump station should be monitored to determine if an upgrade in the future is necessary to supply the peak hour demands with adequate pressure.

	Year				
	2013	2023	2033	2063	
Projected Population and Demand (1)	-				
Estimated Population Served	2,301	3,062	3,499	4,098	
Average Day Demand (gpd)	464,731	618,623	706,776	827,883	
Maximum Day Demand (gpd)	853,704	1,192,038	1,375,527	1,601,397	
Peak Hour Demand (gpm)	831	1,237	1,453	1,713	
Evaluation of Existing Sources					
Available Existing Source (gpm) (2)					
North Range Business Park	1,800	1,800	1,800	1,800	
Total Available Source (gpm)	1,800	1,800	1,800	1,800	
Source Surplus/(Deficiency) (gpm) (3)	969	563	347	87	

 Table 5-28

 Pump Station Capacity Analysis for North Range Business Park Zone

Notes:

(1) Projected demands taken from Volume 2. Estimated population served calculated as Average Day Demand / water demand per capita factor (202 gpcd).

(2) Available source assumes largest pump is offline.

(3) Source surplus is the amount of available sources greater than peak hour demand.

Swan Ranch (Future)

The proposed Swan Ranch pump station would be the source of supply to the Swan Ranch pressure zone. The projected demands in the Swan Ranch pressure zone are shown in Table 5-29. The pump station does not need to be sized for the peak hour demand because the Swan Ranch pressure zone contains an elevated reservoir that provides equalizing storage.

The proposed pump station should be sized with a firm capacity of 4,000 gpm to supply the projected maximum day demand.

	Year					
	2013	2023	2033	2063		
Projected Population and Demand ⁽¹⁾						
Estimated Population Served		2,326	4,722	11,279		
Average Day Demand (gpd)		469,931	953,906	2,278,387		
Maximum Day Demand (gpd)		990,741	2,019,134	5,708,277		
Evaluation of Existing Sources						
Available Existing Source (gpm) (2)						
Swan Ranch PS (4,000 gpm)		5,760,000	5,760,000	5,760,000		
Total Available Source (gpm)		5,760,000	5,760,000	5,760,000		
Source Surplus/(Deficiency) (gpd) (3)		4,769,259	3,740,866	51,723		

Table 5-29 Pump Station Capacity Analysis for Swan Ranch Zone

Notes:

(1) Projected demands taken from Volume 2. Estimated population served calculated as Average Day Demand / water demand per capita factor (202 gpcd).

(2) Available source assumes largest pump is offline.

(3) Source surplus is the amount of available sources greater than maximum day demand.

Chalk Bluff (Future)

The Chalk Bluff pump station is proposed to be the source of supply to the proposed Chalk Bluff pressure zone. The projected demands are shown in Table 5-30. Initially, the pressure zone would not include storage so the pump station will be sized to supply peak hour and fire flow demands. The capacity is based on a future fire flow requirement of 3,500 gpm assigned to the future zoning type, Planned Unit Development. By 2063, an elevated storage reservoir is proposed for the Chalk Bluff pressure zone. Once installed, the pump station would only need to convey the maximum day demand. The elevated storage would be sized to provide equalizing and fire flow storage.

The proposed pump station should be sized with a firm capacity of 3,500 gpm to supply the fire flow goal initially and in the long term to supply the projected maximum day demand. Before proceeding with design, the fire flow goal in the area should be confirmed by the fire authority.

	Year					
	2013	2023	2033	2063		
Projected Population and Demand ⁽¹⁾						
Estimated Population Served			720	5,680		
Average Day Demand (gpd)			145,473	1,147,261		
Maximum Day Demand (gpd)			313,626	2,940,728		
Peak Hour Demand (gpm)			373	3,468		
Fire Flow Demand (gpm)			3,500	3,500		
Evaluation of Existing Sources						
Available Existing Source (gpm) (2)						
Chalk Bluff PS (3,500 gpm)			3,500	3,500		
Total Available Source (gpm)			3,500	3,500		
Source Surplus/(Deficiency) (gpm) ⁽³⁾			0	0		

 Table 5-30

 Pump Station Capacity Analysis for Chalk Bluff Zone

Notes:

(1) Projected demands taken from Volume 2. Estimated population served calculated as Average Day Demand / water demand per capita factor (202 gpcd).

(2) Available source assumes largest pump is offline.

(3) Source surplus is the amount of available sources greater than maximum day demand.

Northeast (Future)

The Northeast pump station is proposed to be the source of supply to the proposed Northeast pressure zone. It may also boost pressures to the area along Panorama Lane. The projected demands are shown in Table 5-31.

The proposed pump station should be sized with a firm capacity of 2,500 gpm to supply the fire flow goal assigned to the future zoning type, Neighborhood Business, in the pressure zone. Before proceeding with design, the fire flow requirements in the area should be confirmed with the fire authority.

	Year					
	2013	2023	2033	2063		
Projected Population and Demand ⁽¹⁾						
Estimated Population Served			1,081	2,343		
Average Day Demand (gpd)			218,345	473,372		
Maximum Day Demand (gpd)			470,730	1,213,377		
Peak Hour Demand (gpm)			560	1,431		
Fire Flow Demand (gpm)			2,500	2,500		
Evaluation of Existing Sources						
Available Existing Source (gpm) (2)						
Northern PS (3,000 gpm)			2,500	2,500		
Total Available Source (gpm)			2,500	2,500		
Source Surplus/(Deficiency) (gpm) ⁽³⁾			0	0		

Table 5-31 Pump Station Capacity Analysis for Northeast Zone

Notes:

(1) Projected demands taken from Volume 2. Estimated population served calculated as Average Day Demand / water demand per capita factor (202 gpcd).

(2) Available source assumes largest pump is offline.

(3) Source surplus is the amount of available sources greater than maximum day demand.

Southeast (Future)

The Southeast pump station is proposed to be the source of supply to the proposed Southeast pressure zone. The projected demands are shown in Table 5-32.

The proposed pump station should be sized with a firm capacity of 3,500 gpm to supply the fire flow goal assigned to the future zoning type, Planned Unit Development, in the pressure zone. Before proceeding with design, the fire flow requirements in the area should be confirmed with the fire authority.

	Year				
	2013	2023	2033	2063	
Projected Population and Demand ⁽¹⁾					
Estimated Population Served			67	237	
Average Day Demand (gpd)			13,583	47,792	
Maximum Day Demand (gpd)			31,240	109,922	
Peak Hour Demand (gpm)			40	141	
Fire Flow Demand (gpm)			3,500	3,500	
Evaluation of Existing Sources					
Available Existing Source (gpm) (2)					
Southeast PS (3,500 gpm)			3,500	3,500	
Total Available Source (gpm)			3,500	3,500	
Source Surplus/(Deficiency) (gpm) (3)			0	0	

Table 5-32 Pump Station Capacity Analysis for Southeast Zone

Notes:

(1) Projected demands taken from Volume 2. Estimated population served calculated as Average Day Demand / water demand per capita factor (202 gpcd).

(2) Available source assumes largest pump is offline.

(3) Source surplus is the amount of available sources greater than than larger of peak hour demand or fire flow

5.6 Storage Capacity Analysis

5.6.1 Evaluation Criteria

Water system storage volume is comprised of five separate components:

- Operational volume
- Equalizing volume
- Fire flow volume
- Emergency volume
- Dead storage volume

These required volume components are illustrated in Figure 5-14. The storage components are described in more detail below.

Figure 5-14 Storage Components

Operating and Dead Storage Volumes

Operating volume is the water above the high water storage elevations set by City operations staff. Dead volume is the volume at the bottom of the reservoir that cannot be used because it is physically too low to provide sufficient pressures. Operational and dead volumes are subtracted from total storage to determine the effective storage available for equalizing, emergency, and fire flow.

Equalizing Volume

Equalizing volume is the total volume needed to moderate daily fluctuations in diurnal demands during periods when the demand exceeds the capacity of the supply system. The equalizing

volume is calculated as the difference between the total source capacity and the peak hour demand for 150 minutes. Equalizing volume requirements are greatest on the day of peak demand. Operation of a properly balanced system results in replenishment of storage facilities during times of day when the demand curve is below the capacity of the supply system, and depletion of storage facilities when the demand exceeds the supply capacity. The equalizing volume of a storage reservoir must be located at an elevation that provides a minimum pressure of 20 pounds per square inch (psi) to all customers served by the reservoir.

Fire Flow Volume

The required fire flow volume for a given pressure zone is calculated as the required fire flow multiplied by the required duration, as established by the local fire authority. Required fire flows and durations vary across BOPU's service area, as it includes multiple zoning designations. The maximum fire flow volume considered in this analysis is 4,000 gpm for 3 hours, within the City pressure zone. The fire flow volume of a storage reservoir must be located at an elevation that provides a minimum pressure of 35 psi to all customers served by the reservoir.

Emergency Volume

Emergency volume is required to supply reasonable system demands during a foreseeable system emergency or outage. A key concept is that establishing standby volume involves planning for reasonable system outages – those that can be expected to occur under normal operating conditions, such as a pipeline failure, power outage or valve failure. Major system emergencies, such as those created by an earthquake, are intended to be covered by emergency system operations planning, since construction of sufficient reserve volume to accommodate sustained system demands under emergency conditions is not economically feasible. The required emergency storage volume is equal to the maximum day demand for 8 hours.

5.6.2 Storage Capacity Evaluation

Total System

There are 4 storage reservoirs with a combined effective storage volume of 28.75 million gallons (MG) that serve the City of Cheyenne's potable water distribution system. The Swan Ranch storage reservoir serves the Swan Ranch pressure zone which is scheduled to be connected to BOPU's distribution system within the next 5 years. Table 5-33 provides an evaluation of BOPU's storage needs for the 50-year planning horizon.

Table 5-33
Storage Capacity Analysis for the Total System

	Year			
	2013	2023	2033	2063
Projected Population and Demand ⁽¹⁾				
Estimated Population Served	77,723	89,109	104,950	146,535
Average Day Demand (mgd)	15.70	18.00	21.20	29.60
Maximum Day Demand (mgd)	35.80	40.90	47.70	65.30
Peak Hour Demand (mgd)	65.70	74.50	86.10	115.80
Available Source (mgd) ⁽²⁾				
Bell, Borie, Happy Jack Well Field	6.90	6.90	6.90	6.90
Federal Well Field	2.27	2.27	2.27	2.27
Water Treatment Plant	35.00	35.00	35.00	35.00
Future Capacity			3.53	21.13
Total Available Source (mgd)	44.17	44.17	47.70	65.30
Required Storage Calculations				
Operational Storage (MG) ⁽³⁾	6.98	2.16	2.56	2.88
Equalizing Storage (MG) ⁽⁴⁾	2.24	3.16	4.00	5.26
Emergency Storage (MG) ⁽⁵⁾	11.92	13.62	15.88	21.74
Fire Flow Storage (MG) ⁽⁶⁾	0.72	0.72	0.72	0.72
Required Storage				
Greater than 35 psi at highest meter (MG) ⁽⁷⁾	21.86	19.66	23.16	30.60
WDEQ Minimum (MG) ⁽⁸⁾	16.65	13.10	15.20	19.92
Existing Effective Storage Greater Than 35 psi $(MG)^{(9)}$				
King 1	5.00	5.00	5.00	5.00
King 2	7.50	7.50	7.50	7.50
Round Top	10.75			
Buffalo Ridge	5.00	5.00	5.00	5.00
Swan Ranch		.24	0.24	0.24
Round Top Reservoir No. 2		5.00	5.00	5.00
Swan Ranch Reservoir No. 2		3.00	3.00	3.00
Southeast Reservoir			3.00	3.00
Chalk Bluff Reservoir				2.00
Total Existing Storage at 35 psi (MG)	28.75	26.00	29.00	31.00

	Year			
	2013	2023	2033	2063
Storage Surplus/(Deficiency) at 35 psi (MG)	6.39	6.08	5.58	0.14

Notes:

- (1) **Projected demands taken from Volume 2.** Estimated population served calculated as Average Day Demand / water demand per capita factor (202 gpcd).
- (2) Available source assumes source pumps are on for 24 hours in a day, at the maximum production rate: Borie Well Field (1,550 gpm), Bell Well Field (2,445 gpm), Federal Well Field (1,575 gpm), Happy Jack Well Field (800 gpm), and the water treatment plant (35 mgd).
- (3) Operational Storage is the volume above the normal high operating level in each reservoir. The high operating levels are: Buffalo Ridge (50'), King 1 (12'). King 2 (22'), Round Top (15').
- (4) Required Equalizing Storage is equal to [(PHD Total Available Source) x 150 minutes].
- (5) Required Emergency Storage is 12 Hours x ADD.
- (6) Required Fire Flow Storage = 4000 gpm x 3 hours.
- (7) Total required storage greater than 35 psi is equal to the total of operational, equalizing, emergency, and fire flow storage.
- (8) WDEQ minimum storage requirement is 25 percent of maximum day demand, fire flow storage, and operational storage.
- (9) The storage volume available in existing reservoirs at 35 psi is based on the elevation of the highest customer (6224 ft) in the City pressure zone. In the Swan Ranch pressure zone, the highest customer is at an elevation of 6377 ft. In addition, 7.5 MG at the King II tank and 0.25 MG at Round Top were subtracted from total storage to determine effective storage based on chlorine disinfection contact time requirements.

A significant component of BOPU's storage reservoirs is operating storage. This is based on the normal high operating level of the reservoir. Any storage above the normal high operating level is unused. BOPU could decrease the operating storage of each reservoir by raising the normal high operating water level to within 2 feet of the overflow in each reservoir. This would increase the amount of storage available to the distribution system for equalizing, fire flow, and emergency storage. BOPU will need additional storage to satisfy the projected growth in the distribution system. Proposed storage reservoirs are discussed in the following paragraphs.

By 2023, BOPU should replace the existing Round Top storage reservoir, an aging structure, to reduce maintenance and operations complications associated with potable water storage. The existing Round Top Reservoir began as a series of open, unlined ponds constructed over 100 years ago. Various improvements over the years have left BOPU with an aging, three-cell reservoir that is too large for the amount of potable water it receives from the Federal and Bell well fields and the intertie from King II. Its unique geometry leaves it too shallow to operate effectively without an excessive amount of manual operations by BOPU staff. The concrete is deteriorating in spite of repairs and its remaining useful life is uncertain. A new 5 MG storage reservoir is proposed to replace the potable water currently stored in the existing Round Top Reservoir. An adequate volume of water should be accounted for in a separate chamber of the tank for establishing necessary chlorine contact time from the wells without taking away from effective storage within the new Round Top Reservoir. The existing Round Top Reservoir will potentially be used for non-potable water storage.

By 2023, installation of a new 3 MG storage reservoir is recommended in the Swan Ranch pressure zone to satisfy the projected demand. Table 5-34 provides an evaluation of the storage requirements for the Swan Ranch pressure zone. Storage in the proposed reservoir would be available to lower pressure zones through PRVs. Potential siting alternatives are a ground level reservoir almost 2 miles to the west of the Swan Ranch area or an additional elevated reservoir closer to the Swan Ranch area. The location and design of the proposed reservoir should be determined with a siting study.

By 2033, installation of a 3 MG storage reservoir is recommended in the southeast portion of the water distribution system. The reservoir would be elevated and provide storage to the projected growth in the City South pressure zone. The reservoir would be located within the City South pressure zone, and filled by gravity from King II. Similar to Buffalo Ridge, the proposed reservoir may include a pump station to meet the hydraulic grade of the City South pressure zone. Storage in the proposed reservoir would be available to lower pressure zones through PRVs. The location and design of the proposed reservoir should be determined with a siting study.

By 2063, a proposed 2 MG storage reservoir would be installed in the Chalk Bluff pressure zone to provide equalizing, fire flow and emergency storage to the boosted pressure zone. Table 5-35 provides an evaluation of the projected storage requirements for the Chalk Bluff pressure zone. Storage in the proposed reservoir would be available to lower pressure zones through PRVs. The location and design of the proposed reservoir should be determined with a siting study.

Table 5-34
Storage Capacity Analysis for Swan Ranch Zone

	Year			
	2013	2023	2033	2063
Projected Population and Demand ⁽¹⁾	_	-		
Estimated Population Served		2,326	4,722	11,279
Average Day Demand (mgd)		0.47	0.95	2.28
Maximum Day Demand (mgd)		0.99	2.02	5.71
Peak Hour Demand (mgd)		1.65	3.40	9.64
Available Source (mgd) ⁽²⁾				
Swan Ranch PS (4,000 gpm)		5.76	5.76	5.76
Total Available Source (mgd)		5.76	5.76	5.76
Required Storage Calculations				
Operational Storage (MG) ⁽³⁾		0.30	0.30	0.30
Equalizing Storage (MG) ⁽⁴⁾		0.00	0.00	0.40
Emergency Storage (MG) ⁽⁵⁾		0.33	0.67	1.90
Fire Flow Storage (MG) ⁽⁶⁾		0.42	0.42	0.42
Required Storage				
Greater than 35 psi at highest meter (MG) ⁽⁷⁾		1.05	1.40	3.03
WDEQ Minimum (MG) ⁽⁸⁾		0.97	1.23	2.15
Existing Storage Greater Than 35 psi (MG) ⁽⁹⁾				
Swan Ranch		0.24	0.24	0.24
Swan Ranch Res No 2		3.00	3.00	3.00
Total Existing Storage at 35 psi (MG)		3.50	3.50	3.50
Storage Surplus/(Deficiency) at 35 psi (MG)		2.19	1.84	0.21

Notes:

(1) Projected demands taken from Volume 2. Estimated population served calculated as Average Day Demand / water demand per capita factor (202 gpcd).

(2) Available source assumes source pumps are on for 24 hours in a day, at the maximum production rate.

(3) Operational Storage is the volume above the normal high operating level in each reservoir.

(4) Required Equalizing Storage is equal to [(PHD - Total Available Source) x 150 minutes] .

(5) Required Emergency Storage is 8 Hours x MDD

(6) Required Fire Flow Storage = 3,500 gpm x 2 hours.

(7) Total required storage greater than 35 psi is equal to the total of operational, equalizing, emergency, and fire flow storage.

(8) WDEQ minimum storage requirement is 25 percent of maximum day demand, fire flow storage, and operational storage.

(9) The storage volume available in existing reservoirs at 35 psi is based on the elevation of the highest customer. (6377 ft)

Table 5-35
Storage Capacity Analysis for Chalk Bluff Zone

	Year			
	2013	2023	2033	2063
Projected Population and Demand ⁽¹⁾				
Estimated Population Served			720	5,680
Average Day Demand (mgd)			0.15	1.15
Maximum Day Demand (mgd)			0.31	2.94
Peak Hour Demand (mgd)			0.54	4.99
Available Source (mgd) ⁽²⁾				
Chalk Bluff PS (3,500 gpm)			5.04	5.04
Total Available Source (mgd)			5.04	5.04
Required Storage Calculations				
Operational Storage (MG) ⁽³⁾			0.16	0.16
Equalizing Storage (MG) ⁽⁴⁾			0.00	0.00
Emergency Storage (MG) ⁽⁵⁾			0.10	0.98
Fire Flow Storage (MG) ⁽⁶⁾			0.42	0.42
Required Storage		-		
Greater than 35 psi at highest meter (MG) ⁽⁷⁾			0.68	1.56
WDEQ Minimum (MG) (8)			0.66	1.32
Existing Storage Greater Than 35 psi (MG) ⁽⁹⁾				
Chalk Bluff Res			2.00	2.00
Total Existing Storage at 35 psi (MG)			2.00	2.00
Storage Surplus/(Deficiency) at 35 psi (MG)			1.32	0.44

Notes:

- (1) Projected demands taken from Volume 2. Estimated population served calculated as Average Day Demand / water demand per capita factor (202 gpcd).
- (2) Available source assumes source pumps are on for 24 hours in a day, at the maximum production rate.
- (3) Operational Storage is the volume above the normal high operating level in each reservoir.
- (4) Required Equalizing Storage is equal to [(PHD Total Available Source) x 150 minutes].
- (5) Required Emergency Storage is 8 Hours x MDD.
- (6) Required Fire Flow Storage = 3,500 gpm x 2 hours.
- (7) Total required storage greater than 35 psi is equal to the total of operational, equalizing, emergency, and fire flow storage.
- (8) WDEQ minimum storage requirement is 25 percent of maximum day demand, fire flow storage, and operational storage.
- (9) The storage volume available in existing reservoirs at 35 psi is based on the elevation of the highest customer. (6250 ft)

(THIS PAGE WAS INTENTIONALLY LEFT BLANK)

5.7 South Cheyenne Water & Sewer District Evaluation

5.7 South Cheyenne Water & Sewer District Evaluation

South Cheyenne Water & Sewer District (SCWSD) is a consecutive distribution system that serves an area south of the City. SCWSD was not included in the modeling of the distribution system because detailed demand information was not available within the district. However, SCWSD's total water demands were assigned to the master meter junctions within the model. This accounts for the demand required to be delivered to the area of the distribution system in the model to confirm necessary pressure is available in the future to maintain adequate service to the customers. It was assumed for modeling purposes that the water demand within SCWSD would not significantly change in the future.

Based on the hydraulic modeling completed for this Volume and the general topography of the SCWSD service area, adequate potable water supply to SCWSD should be maintained throughout the planning periods. With the Southern Transmission Mains delivering water to the City pressure zones through the area of SCWSD, connecting to these transmission mains to provide additional sources of potable water supply to the district through future master meters. In addition, these connections would help balance flows out in the southern part of the system while keeping water moving through the Southern Transmission mains in the near-term. However, this option was not modeled as it was understood that this was not a currently desired improvement by SCWSD.

Final Volume 5 – Potable Water Storage and Distribution

5.7 South Cheyenne Water & Sewer District Evaluation

(THIS PAGE WAS INTENTIONALLY LEFT BLANK)

Monitoring of pressure, level and/or flows at key locations throughout the potable water distribution system will benefit the operation and maintenance of the system in following ways:

- Operations and Maintenance
 - Operating the distribution system day to day through SCADA and/or an operations dashboard.
 - o Real-time and predictive hydraulic modeling.
 - Increasing operational awareness of the movement of flow through the system.
 - Diagnosing maintenance and rehabilitation needs.
 - Locating areas of high flows/pressures and/or low pressures due to leaks, high demands, or fire flows.
- Planning and System Analysis
 - Completing model calibration of steady-state and extended period conditions including in-depth operations and water quality analysis.
 - o Creating demand characterization (diurnal patterns, etc.) by pressure zone.
 - Assisting improvement projects with up-to-date flow and pressure data.
 - Increasing accuracy of distribution system analysis and planning.
- Performance Tracking and Optimization
 - Developing historical trending of distribution system performance.
 - Evaluating unaccounted for water (UFW) by pressure zone (district metering areas).
 - Assessing the need and performance of pressure management.
 - Optimizing distribution system operations including water supply balancing, power consumption, and chemical expenditure.

Additionally, water quality monitoring is beneficial in areas where there is low turnover of water during low demand periods including storage reservoirs, large transmission mains, distribution dead ends, and the east most extent of BOPU's distribution system including the Sun Valley pressure zone which is farthest from potable water sources.

5.8.1 Existing Monitoring Locations

BOPU currently monitors pressure, level and flow at a number of water distribution facilities through their SCADA system. Currently each of the reservoirs has level monitoring, each of the pump stations has flow and pressure monitoring, and many of the major transmission lines from Sherard WTP and Round Top Reservoir have flow monitoring. There are a few additional pressure monitoring data points within the distribution system, mostly at PRV stations. Round Top Reservoir has turbidity and residual chlorine monitoring. Table 5-36 lists the current locations, data type, and pressure zone of SCADA data collection. The list is not all-inclusive of all SCADA data points but those that apply to pressure, level, flow, and quality data types in the

distribution system. Figure 5-15 shows the existing monitoring locations in the distribution system and their data type.

Name	Data Type(s)	Data Point Location	Pressure Zone	Notes		
Storage Reservoirs						
King I Reservoir	Level / Chlorine	At Reservoir	City			
King II Reservoir	Level / Turbidity / Chlorine	At Reservoir	City			
Round Top Reservoir	Level / Turbidity / Chlorine	At Reservoir	City	Level data point for each of three chambers		
Buffalo Ridge Reservoir	Level / Turbidity / Chlorine	At Reservoir	City			
		Pump Stations				
Buffalo Ridge Pump Station	Pressure/Flow	Suction/Discharge at Pump Station	City			
Western Hills Pump Station	Pressure/Flow	Suction/Discharge at Pump Station	Western Hills			
Monterey Heights Pump Station	Pressure/Flow	Suction/Discharge at Pump Station	Monterey Heights			
Deer Avenue Pump Station	Pressure/Flow	Discharge at Pump Station	Deer Avenue			
The Pointe Pump Station	Pressure/Flow	Suction/Discharge at Pump Station	The Pointe			
North Range Business Park Pump Station	Pressure/Flow	Suction/Discharge at Pump Station	North Range Business Park			
Transmission Mains						
30-inch Hynds Line	Flow	Downstream of King I	City			
42-inch Southern Delivery Phase I Line	Flow	Downstream of King I	City			
24-inch Round Top Line	Flow	Downstream of Round Top Reservoir	City			
30-inch Round Top Influent Line	Flow	Upstream of Round Top Reservoir	City			
30-inch Round Top Line	Flow	Downstream of Round Top Reservoir	City			
30-inch Base Line	Flow	Downstream of the "X"	City			
24-inch Western Hills Line	Flow	Downstream of the "X"	City			

Table 5-36			
Existing System Monitoring Locations			

Name	Data Type(s)	Data Point Location	Pressure Zone	Notes	
30-inch Western Hills Line	Flow	Downstream of the "X"	City		
36-inch King Intertie Line	Flow	Downstream of King I Reservoir	City		
36-inch King I Reservoir Influent	Flow	Upstream of King I Reservoir	City	Currently data is not available at this location	
Buffalo Ridge Influent	Flow	Upstream of Buffalo Ridge Reservoir	City		
Pressure / PRV Stations					
Snyder Avenue	Pressure	BOPU Shop	City		
Converse Avenue PRV Stations (2 locations)	Pressure	Upstream/Downstream at PRV Station	Dell Range	Two PRV stations on parallel 24-inch mains	
Airport Blvd PRV Station	Pressure	Upstream/Downstream at PRV Station	Dell Range		
Pershing Blvd PRV Station	Pressure	Upstream/Downstream at PRV Station	Dell Range		
Water Sources					
Federal Well Field	Flow	Upstream of Round Top Reservoir	City		
Bell Well Field	Flow	Upstream of Round Top Reservoir	City		
Happy Jack Well Field	Flow	Upstream of King II Reservoir	City		
Borie Well Field	Flow	Upstream of King II Reservoir	City		
Sherard WTP Discharge	Flow	Upstream of King II Reservoir	City		

5.8.2 Recommended Monitoring Locations

At a minimum level of monitoring, permanent system monitoring (SCADA) data points are recommended at locations for the following data types:

- Pressure at:
 - Suction and discharge of all pump stations.
 - Upstream and downstream of all PRVs.
- Level at:
 - All clearwells.
 - All storage reservoirs.

- Flow at:
 - Major transmission mains (24-inch and greater) feeding system between any significant flow diversions (examples: the "X", King Intertie).
 - Pump stations, individual pump flow preferred, at a minimum total pump station flow.
 - Well field and WTP discharges to distribution system.

At an advanced level of monitoring, permanent system monitoring (SCADA) data points are recommended at locations for the following data types:

- Flow at:
 - Entrances to and exits from pressure zones, located at PRV stations if possible.
- Quality at:
 - Turbidity and chlorine residual at storage reservoirs and reservoirs.
 - Turbidity, chlorine residual, pH and temperature at select locations along major transmission mains (potentially at flow meter vaults) and at the extents of the system. If possible, include pressure monitoring at these locations as well.

According to the minimum and advanced levels of monitoring recommended, Table 5-37 lists the recommended locations, data type, pressure zone, and planning period implementation of SCADA data collection. Figure 5-15 shows the recommended monitoring locations in the distribution system, their data type, and planning period implementation.

Name	Data Type(s)	Data Point Location	Pressure Zone	Implementation Timing	
Minimum Level of Monitoring					
Storage Reservoirs					
Swan Ranch Reservoir 1	Level	At Reservoir	Swan Ranch	Near-term	
Swan Ranch Reservoir 2	Level	At Reservoir	Swan Ranch	Near-term	
Round Top Reservoir 2	Level	At Reservoir	City North	Near-term	
Southeast Reservoir	Level	At Reservoir	Southeast	Mid-term	
Chalk Bluff Reservoir	Level	At Reservoir	Chalk Bluff	Long-term	
		Pump Stations			
Deer Avenue Pump Station	Pressure	Suction at Pump Station	Deer Avenue	Near-term	
Swan Ranch Pump Station	Flow/Pressure	Suction/Discharge at Pump Station	Swan Ranch	Near-term	
Southeast Pump Station	Flow/Pressure	Suction/Discharge at Pump Station	Southeast	Near-term	
Northeast Pump Station	Flow/Pressure	Suction/Discharge at Pump Station	Northeast	Mid-term	
Chalk Bluff Reservoir	Flow/Pressure	Suction/Discharge at Pump Station	Chalk Bluff	Mid-term	
Transmission Mains					
Southern Delivery Ph I 42-inch Line	Flow	As shown on figure	City South	Near-term	
Hynds Line	Flow	As shown on figure	City Central	Near-term	
Pressure / PRV Stations					
All Sun Valley PRVs (10 locations)	Pressure	Upstream/Downstream at PRV Stations	Sun Valley	Near-term/ Mid-term	
All City Central PRVs (6 locations)	Pressure	Upstream/Downstream at PRV Station	City Central	Near-term	
All City South PRVs (7 locations)	Pressure	Upstream/Downstream at PRV Station	City South	Near-term/ Mid-term	
Southeast PRV	Pressure	Upstream/Downstream at PRV Station	Southeast	Mid-term	
Chalk Bluff PRV	Pressure	Upstream/Downstream at PRV Station	Chalk Bluff	Mid-term	

 Table 5-37

 Recommended System Monitoring Locations

Name	Data Type(s)	Data Point Location	Pressure Zone	Implementation Timing	
Advanced Level of Monitoring					
Storage Reservoirs					
King I Reservoir	Turbidity	At Reservoir	City North/South	Near-term	
Round Top Reservoir 2	Turbidity / Chlorine	At Reservoir	City North	Near-term	
Swan Ranch Reservoir 1	Turbidity / Chlorine	At Reservoir	Swan Ranch	Near-term	
Swan Ranch Reservoir 2	Turbidity / Chlorine	At Reservoir	Swan Ranch	Near-term	
Southeast Reservoir	Turbidity / Chlorine	At Reservoir	Southeast	Mid-term	
Chalk Bluff Reservoir	Turbidity / Chlorine	At Reservoir	Chalk Bluff	Long-term	
Transmission Mains					
Southern Transmission Mains (2 locations)	Turbidity / Chlorine / pH / Temperature	As shown on figure	City South	Near-term	
Pressure / PRV Stations					
All Dell Range PRVs (4 locations)	Flow	At PRV Station	Dell Range	Near-term	
All Sun Valley PRVs (10 locations)	Flow	At PRV Station	Sun Valley	Near-term/ Mid-term	
All City Central PRVs (6 locations)	Flow	At PRV Station	City Central	Near-term	
All City South PRVs (7 locations)	Flow	At PRV Station	City South	Near-term/ Mid-term	
Southeast PRV	Flow	At PRV Station	Southeast	Mid-term	
Chalk Bluff PRV	Flow	At PRV Station	Chalk Bluff	Mid-term	
System Extents					
System Extents (6 locations)	Turbidity / Chlorine / pH / Temperature	Not shown	-	Mid-term	

2013 Water and Wastewater Master Plans

5.8.3 System Monitoring Data Types and Equipment

A variety of distribution system monitoring equipment is available for utilities. Intended use of pressure, flow, level, and water quality data types can influence the preferred monitoring equipment.

Pressure

Pressure data in distribution systems provides information for pressure management, hydraulic model calibration, pump station operation, leak detection, pressure zone isolation, and pressure surges. Permanent pressure monitoring equipment for distribution systems is common and easily obtainable. Pressure monitoring equipment usually consists of a pressure transducer and remote terminal unit (RTU) to transmit information back to the SCADA system.

Finding locations to install the equipment in the system can be more difficult. Locating pressure monitoring in existing or future vaults (meter, valve, etc.) or buildings (pump stations, City buildings, etc.) is recommended rather than expending the cost to put in new vaults or manholes solely for pressure monitoring. The pressure transducer can be mounted in a pipe or on a hydrant. Use locations that are easily accessible for maintenance. Long-term exposure of hydrant mounted pressure loggers to the elements (freezing, sun, etc.) could be a maintenance concern. However, temporary pressure monitoring using the hydrant pressure loggers is still recommended as a portable method for troubleshooting or improvement planning purposes.

Transient pressure events can be captured with certain types of pressure monitors that have high speed data collection. This can be a helpful feature if there is the need to locate causes or effects of surge pressures within the system.

Flow

Flow data in distribution systems can be used for a number of purposes including day-to-day operations, hydraulic modeling calibration, leak detection, and demand characterization. Flow meters assist in determining where demand in the system is located and in balancing supply throughout the system to customers, storage, and pump stations. Permanent flow meters for distribution systems are common and easily obtainable. Flow monitoring equipment usually consists of a flow meter and a remote terminal unit (RTU) to transmit information back to the SCADA system. Electromagnetic meters (mag meters) are the preferred type as they are most accurate and incur very low headloss to the system.

Finding locations to install the flow monitoring equipment in the system can be difficult. Typically new vaults are required to implement flow monitoring; however, they can be coupled with PRV vaults and pump stations. Pressure and water quality monitoring can be provided at the same location, if desired.

Another use for flow meters in the system is creating District Metered Areas (DMAs). DMAs can be an effective technique of measuring and locating real water losses. The objective of DMA

monitoring is to isolate and monitor a small area of the distribution system, with supply flows into the DMA of sufficient scale so that flows can be analyzed to distinguish components of normal consumption from leak rates. The areas are established by installing flow meters on one or more of water supply mains to the DMA and installing new or closing existing isolation valves on all of the other mains entering the DMA. A DMA could be a pressure zone or an even smaller area of the system. Having flow meters at all locations into and out of a DMA can be costly, so for BOPU, use of existing PRV vaults is recommended as the locations to establish DMAs throughout the system. The existing pressure zones are already isolated and can be converted to DMAs fairly easily. In addition to helping find leaks, the flow data from the DMA meters can be also used for demand characterization, hydraulic model calibration information, and pressure zone supply optimization in each pressure zone.

Level

Level data in distribution systems is essential for determining the amount of water stored in reservoirs. Level data can also be correlated to flow in and out of the storage reservoirs using the associated time step data. This information can be used to calibrate hydraulic models over an extended period simulation, demand characterization by pressure zone, and determine optimal turnover intervals. In addition, by analyzing reservoir levels and trends, water retention time within the storage reservoirs can be determined which can be an indicator of water quality within the reservoir and the potential need for chlorine boosters at these sites.

Permanent level sensors for distribution systems are common and easily obtainable. Level equipment usually consists of a level sensor and a remote terminal unit (RTU) to transmit information back to the SCADA system. There are many types of level sensors, including ultrasonic sensors that measure down to the water level, pressure sensors that measure based on hydrostatic pressure at the bottom of the reservoir, capacity sensors use a voltage difference to equate to level changes, and radar sensors send an electromagnetic signal at the water surface and calculate level based on the travel time. Ultrasonic or pressure sensors are recommended as they tend to work best in water storage reservoirs.

Water Quality

Water quality monitors enable access to almost real-time quality data such as turbidity, disinfectant residual, pH, and temperature in the system, allowing for optimization of distribution system water quality. Proper location of these monitors along with the sampled parameters can be used as a water quality event early warning system and as an indicator of overall water quality in the distribution system. Eventually, equipment will become available that will replace the need for manual sample collection for distribution system water quality reporting.

However, water quality monitoring in distribution systems is currently an emerging application of continuous water quality testing equipment. Water quality monitoring in the distribution system should be delayed until the technology has been refined and proven. The equipment can be

costly and may not always work as expected. The data needs to be analyzed and interpreted carefully. Also, if it used as an early warning detection system for water quality events in the distribution system, potential exists for false positives if anomaly detection process is inadequate.

The following is a list of some of the current manufacturers that supply permanent water quality monitoring equipment:

- In-situ
- Hach
- JMAR
- GE Instruments
- s::can
- YSI
- Aquas Smart Water Solutions
- Endetec

5.8.4 System Monitoring Implementation

BOPU's existing radio-based SCADA system could be used to implement further system monitoring. An alternative is using cellular signal telemetry to wirelessly transmit data securely to the SCADA system. Cellular technology is becoming increasingly secure, stable, and relatively inexpensive compared to the radio-based technology. The cellular telemetry network would only send data to the SCADA system and have no control over distribution system operations. It should be considered as an alternative in the future especially considering the remote sites such as PRV stations, flow meters, and water quality monitoring. Solar or hydropowered monitoring solutions for non-essential data points are recommended to reduce initial construction costs and on-going energy consumption. Major facilities such as storage reservoirs and pump stations as well as control valves could still use the radio-based network. Figure 5-16 shows a schematic of the general monitoring data collection system using the traditional radio network extended with a cellular-based telemetry network.

The following is a list of suppliers that currently offer cellular-based telemetry equipment:

- Telog (Pressure, Level, Computed Flow)
- Global Water (Pressure, Level Flow, Quality)
- Newfields/Aquas Smart Water Solutions (Pressure, Quality, Flow)
- Mueller Systems (Leak, Flow, Pressure)

Prior to purchasing any monitoring sensor and telemetry equipment, a comprehensive evaluation of each type of equipment (pressure, flow, level, and water quality) should be completed to determine the preferred equipment for standardization. The evaluation could involve leasing or purchasing one unit for testing purposes or an equipment demonstration by a vendor. Installation of monitoring equipment should be accomplished through a capital improvement project, with a certain number of sites completed annually, starting with the near-term minimum level of monitoring locations. An annual capital improvement project budget of \$250,000/yr for near-term starting in 2015 until 2023 is recommended to implement the near-term minimum level of monitoring locations and a portion of the advanced level of monitoring locations. After 2023, in the mid-term and long-term planning periods, a budget \$150,000/yr for maintenance and improvements to the system monitoring program is recommended. Any future monitoring locations associated with major improvements (storage, pump stations, transmission mains) should be included in the design and construction cost of those improvements.

Figure 5-16 Radio/Cellular Telemetry Monitoring Data Collection Schematic

Once the data is collected, it should be used and analyzed consistently by BOPU. To maximize the usefulness of monitoring data:

- Flows should be equated to velocities in the mains using diameters.
- Levels should be equated to flows in and out of storage reservoirs using the time steps.
- Pressures should be equated to hydraulic grades using installation elevations.

Pressure data should be reviewed consistently and analyzed annually to monitor pressures during low and high flow periods for anomalies or to detect pressure zones that are not completely isolated. Pressure data can help optimize pressure management and monitor system performance throughout the year and during fire flows.

Flow data should be reviewed consistently and analyzed annually to monitor the travel of water through the system and detect large flows associated with main breaks, fire flows, and high use by customers. Flow data can be used to optimize system operations through an understanding of demand quantities and locations.

Level data should be reviewed consistently and analyzed annually to monitor reservoir level trends and balancing of water supply to various parts of the distribution system. Level data can help optimize how water is stored and distributed into the system throughout the year. By analyzing the reservoir level trends, decisions can be made on standard operating procedures and reservoir levels to maintain water quality and balance water in the system during different demand scenarios.

Water quality data should be reviewed consistently and analyzed monthly to monitor general water quality in the system and determine if modifying operations would improve water quality, including increasing chlorine residual in the system at storage reservoirs and the extents of the system. The data could be used to analyze and optimize operations in a way that would improve or at least not deteriorate water quality the in system.

Some systems such as Mueller are building in leak detection equipment (Echologics) through into their wireless monitoring systems.

To assist in the review and analysis of system monitoring data, an operations dashboard is recommended with alert capability to monitor the system in near-real time. Web-based GIS solutions are beginning to emerge offering a flexible, customizable dashboard for reviewing operations through the system. Alerts can be sent out via email or text messaging when a set performance parameter is exceeded. Any alerts should be investigated and compared with multiple data sources so as not to respond to false positives due to malfunctioning monitoring equipment.

A few examples of companies that supply customized water utility operations dashboards are:

• ESRI (Water Operations Dashboard)

- Innovyze (IWLive/Demand/Pressure Watch)
- IDModeling (Sedaru)
- IBM (Intelligent Operations Center)
- GE (Proficy Vision)
- Element Blue (Smarter Water)
- Geo-jobe (Utility Operations Dashboard)
- Critigen (Operations Dashboard)
- TaKaDu
- NewFields (iSENS)

5.9 Assessment and Rehabilitation

An initial means and method for assessing and prioritizing the replacement or upgrading of existing mains within the water distribution system is presented in this section. The distribution system assessment method is based on an industry-accepted practice of determining likelihood of failure (LoF) and consequence of failure (CoF) to determine critical assets for rehabilitation or replacement. Asset attributes and performance parameters have been established and organized into LoF or CoF factors and each is assigned a relative category multiplier from 1 to 5 to weight the different factors by their relative affect on failure.

A scoring system has been set up for each factor to determine which asset attributes or performance parameters receive which score. The higher the total score across all attributes and parameters, the more critical the asset is for replacement or rehabilitation. Scoring established in the 2010 Pressure Management Study, by HDR Engineering, developed from an in-depth main break analysis is used as the basis of some of the attributes and parameters used in the assessment method. The means and methods presented within this section should be re-evaluated at least every water master plan cycle to review data availability and scoring of the attributes and parameters based on updated main break and condition data.

5.9.1 Assessment Means

The first part of the distribution system assessment process is developing asset attributes and performance parameters that will participate in the assessment method. Asset attributes and performance parameters have been categorized into two phases:

- Phase 1 Enough accurate data is available to include in assessment; immediate implementation into scoring method; continue collecting and refining data from source.
- Phase 2 Not enough or no data available to include in the assessment; delayed implementation into scoring method; start or continue collecting data from source.

Appendix 5-E contains a list of all asset attributes and performance parameters that are recommended for inclusion in the distribution system assessment means.

All asset attributes and performance parameters much be tied back to a pipe asset by a pipe facility ID in GIS for scoring. Several performance parameters need to be converted from point data to the pipe; for example, main breaks are collected as points that need to be tied back to a polyline pipe asset; these types of parameters are noted.

Asset Attributes

Asset attributes include information about the particular asset or its condition. Example asset attributes include diameter, material, or bedding type. The full list of asset attributes included in the Phase 1 and Phase 2 assessment means are included in Appendix 5-E. This information is

obtained either through field inspection/testing, as-builts, or previously compiled GIS data. All asset attributes are LoF factors.

Performance Parameters

Performance parameters are typically non-material in nature and have a historical context based on how particular classes of assets have performed in the past under various conditions. Example performance parameters include operating pressure, main break occurrences, main criticality, or water quality. The full list of performance parameters is included in the Phase 1 and Phase 2 assessment means are included in Appendix 5-E. This information is obtained either through field observation, hydraulic model, system performance tracking, or previously compiled GIS data. Performance parameters can be either LoF or CoF factors.

5.9.2 Assessment Method

The assessment method takes the assessment means information collected from various sources and calculates a pipe condition score based on a weighted scoring matrix. Once the assets are scored, a process to review the results and select pipe segments for rehabilitation needs to be implemented. A recommended data structure to contain the distribution system assessment information from the various data sources can be found in Appendix 5-E.

Scoring

Each asset attribute and performance parameter was assigned values or ranges of values for scoring. Each value or range of values was assigned a score from 1 to 5 with higher scores assigned to those affecting LoF or CoF at a greater level based on an observed or perceived level. A relative category multiplier from 1 to 5 is assigned to each asset attribute and performance parameter to weight the different factors by their relative affect on failure. Therefore, the maximum score for each scored category is multiples of 5 from 5 to 25. Appendix 5-E includes the initial scoring matrix to use while developing the distribution system assessment and rehabilitation selection process.

Rehabilitation Selection Process

A rehabilitation selection process will take the asset attributes and performance parameters from the sources of data combined with the scoring method to calculate total scores for each pipe segment. Geoprocessing and python tools can be built to perform these functions once the data is compiled into one geodatabase. Any recently improved pipes should be filtered out of the results to ensure the process does not inadvertently select recently rehabilitated pipe. The process results should be sorted by pipe score from high to low and pipe diameter from low to high. An initial rehabilitation list can be created by selecting approximately 2 to 3 miles of pipe segments with the highest scores and lowest diameters.

The next step of the rehabilitation selection process, user-based selection, prioritization, and grouping of rehabilitation segments, can be a manual GIS process or a semi-automated process

within a customized GIS-based web browser dashboard. The manual GIS process could be an interim solution until a dashboard is developed or purchased. The user-based selection, prioritization and grouping of rehabilitation segments should allow for external information to be included in the assessment to capture known problem areas or opportunity improvement areas that may have not shown at the top of the list in the scoring results.

External information could include specific field data of pipe needing immediate replacement or City-related street improvements such as overlays or reconstruction when there is an opportunity to replace pipe when the streets are already torn up. In addition, supplement information in addition to the total segment scoring for prioritizing and grouping of rehabilitation projects should be made available to the user. Supplemental information could include aerial photography, pipe attributes (material, age, diameter, etc.), main break locations, main breaks per 100 miles by pipe attribute type, estimated remaining life based on main break data, hydraulic model results data (flow, velocity, pressure), and valve and hydrant condition data from inspection programs. Renewal technology (open cut, line, burst) alternatives should be presented for selection for each rehabilitation project.

Finally, cost estimating information should be included in the assessment process to tally the total rehabilitation costs to maximum replacement projects while remaining within the planned annual rehabilitation program budget. Figure 5-17 depicts the general process to select pipe rehabilitation segments based on the assessment method.

Distribution System Assessment and Rehabilitation Planning Tools

Several software companies have developed various distribution system assessment and rehabilitation planning tools including the following examples:

- InfoMaster Water / CapPlan Water (Innovyze)
- Water Utility Capital Improvement Planning (ESRI)
- KANEW (Water Research Foundation)
- Check Up Program for Small Systems (EPA)
- CARE-W (National Civil Engineering Laboratory)
- Riva DS (Riva Modeling)
- Buried No Longer Pipe Replacement Modeling Tool (AWWA)
- Baseform (AWARE-P)

These software tools could be used in conjunction with a customized rehabilitation selection tool or as the assessment method itself incorporating the assessment means and the scoring matrix presented above.

Main Breaks

Main break information should continue to be collected to support scoring matrix updates, predict vulnerable areas, and estimate remaining asset life. GIS can be used to manually or

automatically associate main breaks to a pipe facility ID for use in the assessment method. All historical data should be kept even after a repair or replacement is completed as it provides more data for analysis of similar pipe segments. The main break information should be used to calculate and trend yearly main breaks per 100 miles for performance tracking and effectiveness of pipe and pressure management improvements. Section **Error! Reference source not found.** discusses a recommended main break response and data collection program in more detail.

Assessment Updates

The distribution system assessment means should be updated annually prior to selecting the next year's rehabilitation projects. During the recommended annual update the following items should be updated in the distribution system assessment database:

- Pipe attributes from the master GIS database.
- Hydraulic model based on the previous years' demand and any operational and infrastructure changes.
- Main break and leak locations from the main breaks database.
- Valve inspection data from the valve inspection and exercising database.
- Hydrant inspection data from the hydrant inspection and flushing database.
- Customer complaints from the complaints tracking database.

Once the assessment means information is compiled into the distribution system assessment database the scoring and rehabilitation selection process can be updated.

5.9.3 Distribution System Assessment Implementation

The distribution system assessment means should be implemented in the next two years for Phase 1 asset attributes and performance parameters. Phase 2 asset attributes and performance parameters should be implemented in 5-10 years when enough data is collected to support inclusion those scoring categories. The assessment method should be integrated with any future computerized maintenance management system (CMMS) to hold as much of the source information as possible. This integration will cut down on the number of data sources necessary to update and export to run the distribution system assessment. A GIS based user-selection process can be used in the near-term until a dashboard or other rehabilitation planning software is implemented.

Figure 5-17

Assessment Scoring and Rehabilitation Selection Process

5.9 Distribution System Assessment Method

5.9.4 Recent Rehabilitation Progress

BOPU has already been actively rehabilitating their distribution system in the last 10 years including replacing, lining or upsizing water mains. Over the past 10 years from 2003 to 2012, a total of 25.5 miles of mains (average of 2.6 miles per year) have been replaced, lined, or upsized. These rehabilitation and replacement projects completed from 2003 to 2012 are presented in Figure 5-18.

5.9.5 Rehabilitation Recommendations

Currently, BOPU has about 110 miles of 4- and 6-inch cast iron lines in older portions of the City. These lines are reaching the end of their service life and in some areas they cause deficiencies in fire flow availability. The pipe replacement and upsizing program for this classification of pipes, especially in areas of higher main break occurrence and deficient fire flow, should be continued. PVC should be used as the primary pipe replacement material and BOPU should continue work to reduce pressures in the system to reduce main breaks and pressure-related stress on the system. Hydraulic modeling should be conducted for each replacement to determine the impact on peak hour pressures and fire flow availability in the local area, to properly size the improvement and to establish the most beneficial connections into the existing system. These classifications of pipes receive a higher scoring in the distribution system assessment method so they have a higher priority for replacement.

Continue to replace, line, or upsize a minimum of 2 miles of pipe per year for the near-term (2013-2017) which would equate to approximately a 270 year rehabilitation cycle of the entire system based on a current total length of 540 miles of pipe. As a comparison, Denver Water has 3,000 miles of water mains and they replace just over 11.4 miles of main per year which equates to an approximate 263 year rehabilitation cycle.

From 2018 onwards, increase the pipeline rehabilitation rate to a minimum of 3 miles per year, which equates to an approximate 180 year rehabilitation cycle based on the current length of pipe. The rehabilitation cycle will increase as pipe is added to the system; however newer pipe should have a longer life than the existing pipe due to improvements in pipe material and installation as long as quality materials and installation inspection is completed to ensure design and construction standards are being followed. Therefore, a final near-term (2018-2023) and mid-term (2024-2033) rehabilitation rate of 3 miles per year is recommended.

BOPU's yearly cost for the rehabilitation program has been approximately \$2,000,000 for an average of 2 miles per year of replaced, lined, or upsized pipes. Therefore, a starting capital improvement project cost of \$2,000,000 per 2 miles (\$189/ft) of pipe rehabilitated is recommended with an annual increase of 4%. This equates to a capital expenditure of \$27.2 million in the near-term (2014-2023) and \$45.6 million in the mid-term (2024-2033).

5.9 Distribution System Assessment Method

Currently, planned rehabilitation and replacement projects from 2013 to 2018 are presented in Figure 5-19. These projects represent only 7.5 miles of pipe rehabilitation in the next 5 years, from 2013 to 2017 (1.5 miles/year) with 2.75 miles accounted for in 2014 and 1.1 miles of pipe rehabilitation in 2018. Additional rehabilitation to meet 2 miles per year through 2017 and 3 miles per year starting in 2018 onward should be planned.

5.9 Distribution System Assessment Method

(THIS PAGE WAS INTENTIONALLY LEFT BLANK)

South Cheyenne Water and Sewer District

K

2012

2006

2007

Pressure Reducing Valve

Water Main

Figure 5-18 Recently Rehabilitated Mains (2003-2012)

Volume 5 – Potable Water Storage and Distribution 2013 Water and Wastewater Master Plans

Legend

Near-term Water Main Rehabilitation (Year) 💻 💻 In Progress 2014

2015

2016

2017

2018

Pressure Reducing Valve Water Main

City of Cheyenne Roads Creeks Lakes

Water Service Area Boundary F.E. Warren Air Force Base South Cheyenne Water and Sewer District

Last Updated: 9/27/2013

1 inch = 1 miles

N

Figure 5-19 Near-term Mains to be Rehabilitated (2013-2018)

Volume 5 – Potable Water Storage and Distribution 2013 Water and Wastewater Master Plans

5.10 Preventative Maintenance

This section recommends implementation of a preventative maintenance plan including levels of service, asset management, preventative maintenance practices, and field data collection for enhancing and tracking performance of the potable water distribution system.

5.10.1 Level of Service

There are two key facets to asset management – defining the level of service (LOS) the system will strive to provide its customers over the long term and determining the most efficient and economical way to deliver that service (the least cost approach). Therefore, determining and detailing the LOS goals that the system will provide is a key first step in the overall asset management plan development process. The asset management program will determine the least cost approach for meeting those established LOS goals.

A LOS agreement defines the way in which the utility owners, managers, and operators want the system to perform over the long term. An established LOS allows utilities to track performance of their systems over a number of years to determine effectiveness of preventative maintenance, customer service, and regulatory compliance. An LOS agreement can be kept for internal uses or externally shared with the public on an annual or semi-annual basis.

Examples of performance indicators that can be included in the LOS agreement include, but are not limited to the following (more in-depth examples are provided in Appendix 5-F):

- Number of breaks per mile that are acceptable.
- Length of time from report of a leak or break until repair.
- Amount of notification (and method) prior to a scheduled shut down.
- Amount of notification (and method) prior to a non -scheduled but nonemergency shutdown.
- Quantity of unplanned interruptions in service verses planned interruptions.
- Number of hours to fix the pipe break once on site.
- System losses (UFW) maintained at less than X% overall.
- Maximum system flow will be X gpd.
- Water pressure will be maintained throughout the system at X psi.
- Rates will be raised annually to avoid rate shock in the system.
- Rates will be reviewed annually.
- Fire flow will be provided X percent of required flow at all hydrants.
- Storage capacity will be maintained at X gallons total.
- No water outage will be longer than X hours total.
- Maximum water quality complaints will be X total annually.
- Customers will be notified of planned system outages at least X hours or X days before the interruption.

- Customers will be notified at least X minutes prior to shut down for an emergency condition, unless life threatening conditions cause a need for immediate shut down.
- Water conservation will be instituted to reduce average daily use by X percent in Y years.
- Response time to customer complaints and service requests.
- Positive total coliform samples throughout the system will be zero.

The performance indicators in the LOS agreement should be established with baseline values initially and updated at least annually to determine the effectiveness and any refinements needed to the asset management and preventative maintenance programs.

5.10.2 Asset Management

Asset management is a framework being widely adopted as a means to pursue and achieve sustainable infrastructure. An Enterprise Assessment Management (EAM) program is made up of asset inventory or registry and asset management plan to determine the least cost approach to delivering the agreement established. The asset inventory is an always up-to-date and accurate record of:

- What and where all of the assets the utility owns and maintains are.
- What condition they are in.
- What their estimated remaining useful life is.
- What their estimated value and replacement cost is.

While the asset management plan generally includes:

- Asset maintenance management approach, procedures and records.
- Emergency maintenance response information.
- Critical and vulnerable assets with resulting special maintenance procedures.
- Assets that are in need of rehabilitation, repair, or replacement due to their current condition.

EAM provides utilities the following benefits¹:

- Increases knowledge of your system, which will allow you to make better financial decisions. This is useful information when considering options to address various system challenges such as meeting regulatory requirements or upgrading system security.
- Reduces system "down-time" and the number of emergency repairs, since you will have planned for the replacement and rehabilitation of your assets.

¹ http://simple.werf.org/Books/Contents/How-Can-Asset-Management-Help-Me-

- Prioritizes rehabilitation and replacement needs and providing time to research costeffective alternatives.
- Shows investors and the public that you are using their money effectively and efficiently, which may make them more likely to increase investment or tolerate rate increases.
- Gives you greater access to financial assistance. Some funding sources give applicants extra credit (higher priority ratings) for having an asset management plan or a capital improvement plan.

Chart 5-1 shows the general asset management plan approach in flowchart form.

Chart 5-1 Asset Management Plan Development Flowchart

The Sustainable Infrastructure Management Program Learning Environment (SIMPLE) framework created by Water Research Foundation and Water Environment Research Foundation can help determine asset management gaps and needs for BOPU. The SIMPLE website has an intuitive and user-friendly set of on-line process and practice guidelines, templates and decision support tools that will:

- Simplify the development of consistent Asset Management Plans
- Provide effective Implementation Guidelines for agencies to assess and drive meaningful improvements in asset management.

In addition, the Partnership for Safe Water program has a self-assessment for distribution system optimization that could help form the vision and goals for cost-effective distribution system asset management and operation and maintenance².

Computerized Maintenance Management System

Adjustments to the utility infrastructure during utility maintenance activities must be collected and cataloged so that the information is recallable and useable within BOPU's overall

² http://www.awwa.org/resources-tools/water-utility-management/partnership-for-safe-water.aspx

information management system. Maintenance activities represent one of the largest day-to-day changes to BOPU's utility infrastructure and without a system to collect and store this information uniformly and consistently the utility data in the GIS and other asset management databases no longer represent the utility infrastructure in the field. BOPU should implement a Computerized Maintenance Management System (CMMS) to track these daily activities to maintain BOPU's infrastructure assets.

The CMMS would allow BOPU to not only track the changes to the GIS data representing the utility systems but also effectively schedule maintenance and track all effort and costs associated with these activities. The CMMS provides BOPU with the ability to capture labor, equipment and material costs for all maintenance activities and use this information to plan for future activities and analyze past maintenance practices.

The CMMS is a tool by which BOPU is able to not only respond to immediate maintenance issues but also develop preventative and ongoing maintenance plans to ensure that the utility systems are operating at an optimum level of service. Additionally, the CMMS can be expanded into other aspects of BOPU's utilities such as collection system, vehicle, meter, and treatment maintenance operations which will provide better data access, scheduling and maintenance across many different BOPU systems.

Along with GIS, CMMS would be a major part of on-going success of the EAM program. Therefore, a GIS-based CMMS solution is recommended such as (a comparative review of these CMMS software packages can be found in Appendix 5-F):

- Cityworks
- Accela
- Infor/Hansen
- Lucidity
- Oracle
- Maximo
- VueWorks
- Cartegraph
- MaintStar
- Elements XS
- GeoStack
- Cityview
- Agile Assets

Other important components or modules that can be found in common CMMS packages are:

- Facilities (for tracking assets not found in the GIS)
- Customer Request Portal (customer input)
- Service Request (customer response)
- Work Odors (labor, material, and equipment planning)
- Parts Inventory
- Resource Manager (labor, material, and equipment planning)
- Fleet (Vehicle) Maintenance
- Asset Registry
- Asset Condition
- Asset Risk
- Asset Valuation
- Budget Forecasting
- Capital Improvement Plan Management
- Permits and Inspections
- Analytics

The selected CMMS system should be able to be fully integrated into the future customer information system (CIS) and utility billing system. A beneficial feature of some of the CMMS systems is mobile access using iPads, iPhones, or similar mobile devices that allows in the field updates to maintenance databases. This can be a powerful tool for maximizing work order response and efficiency and minimizing loss of information between the field and the office.

5.10.3 Preventative Maintenance Practices

Preventative maintenance is essential to prolonging infrastructure life and meeting the LOS goals established for the distribution system. The following preventative maintenance practices are recommended along with a method to plan and track their completion (sorted in recommended implementation order):

- Hydrant Inspection and Flushing
- Main Break and Leak Response
- Valve Inspection and Exercising
- Backflow Prevention Inspection

• Customer Complaint Tracking

Depending on the CMMS software implemented, some or all of these preventative maintenance practices may be able to be planned and tracked in the CMMS using mobile applications. Another option is to use ArcGIS Online Configuration for Water Utilities & Water Utility Apps which allows utility organizations to maximize their use with out-of-the-box configurations for desktop and mobile mapping, data collection, and inspection/maintenance tracking solutions. These apps can be customized and expanded on to create BOPU-specific preventative maintenance applications. In addition, there are several other vendors who offer tailored solutions to collect this information such as Cartegraph, Fulcrum, or Sedaru. Some of the apps including ArcGIS Online require data connections at all times to function correctly while some allow intermittent data connections and sync at reconnection; this could cause issues if there are areas of the system with unreliable data connections. If out-of-the-box mobile apps are used, care should be taken to ensure they will be compatible with the future CMMS and other BOPU systems (CIS, assessment method, system monitoring, etc.) as necessary.

Hydrant Flushing and Inspection

Arguably, a flushing program is the single most effective maintenance practice for improving system reliability and water quality. It can also be time and manpower intensive, and is, therefore, often abbreviated or sacrificed altogether for more reactive maintenance. A regular flushing program, however, can reduce a water system's need for reactive maintenance.

Regular system flushing improves water quality in several ways. The flushing removes biofilm and other bacteriological growth which can cause positive coliforms, taste and odor problems. Flushing also removes sediment, corrosion products and encrustation, which cause turbidity or discoloration. These sediments provide an environment for future biofilm growth and a higher chlorine demand. Finally, flushing introduces fresh water with higher chlorine residual. Flushing also improves system reliability by preventing tuberculation and maintaining adequate flow. Through its implementation, it helps the collection of data on valves, blow-offs, hydrants and improve distribution system maps.

BOPU has a history of discolored water events and has known manganese (Mn) accumulation in their raw water feed lines and distribution system piping. They have taken significant measures to prevent additional Mn from entering the distribution system by installing improvements at the WTP and within their raw water collection system. These projects have been very successful. However, they do continue to experience on-going challenges related to colored water events. This is attributed to Mn accumulation and associated periodic destabilization/release events.

Discoloration events are typically associated with release of accumulated precipitates and/or dispersion of black slime layers. The degree of discoloration depends on the amount of material entrained. Release events occur due to physical/hydraulic mobilization resulting from flow

reversals and velocity changes, as well as chemical destabilization and solubilization resulting from water chemistry shifts.

BOPU can often associate a colored water event with street sweeping in the area. The street sweeping crew will often use a large volume of water from a single hydrant which can mobilize sediment. Similarly, Cheyenne can expect to have calls related to dirty or colored water following a water line break or a fire event.

BOPU recently participated in a research project which focused on the impact and implications of manganese accumulation in the distribution system. The project was funded by the Water Research Foundation and resulted in a report titled "Legacy of Manganese Accumulation in Water Systems: Assessment, Consequence and Prevention." The report is still under review by the participating utilities and by the Water Research Foundation. A draft version of the write-up on Cheyenne can be found in Appendix 5-F.

BOPU regularly performs distribution system monitoring and pipe cleaning practices to control the occurrence of colored water events. They currently flush their distribution system as part of their annual maintenance program. The annual flush is performed in the late spring before the system velocities increase with peak summer demands. The flushing is used to increase the velocity in the distribution system to mobilize and purge sediment from the system. BOPU has experienced an increase in colored water complaints in years when the peak system demands occurred prior to the annual system flush. The high velocities in the system resulting from the peak demands are thought to have acted as an unintentional system flush, dislodging scale in the pipes and resulting in colored water events.

BOPU developed a conventional flushing program in 1995 in response to a Mn event. Prior to this, the utility only performed conventional spot flushing as needed to address discoloration complaints. Annual flushing is performed on the entire system, but only using half of the hydrants; selected hydrants are alternated each year. The purpose of this effort is to control solids and metals buildup, including but not exclusive to Mn, with the goal to prevent further colored water events.

System pressures are fairly consistent throughout the distribution system, ranging from ~60-150 psi. The flushing velocity is difficult to predict because lines are not isolated during a flush. Water velocity is dependent on the quantity and diameter of lines feeding the flush site, which is further dependent on other system demands during the time of the flush.

BOPU has provided anecdotal evidence that they often just "chase Mn around the system" during large scale colored water events. It is likely that sediment in the distribution system has already been transported from various locations within the system and its origin is unknown. BOPU has been very proactive in preventing Mn from entering their distribution system. They have made improvements to their treatment process and in their raw water system. The next

step is to eliminate the previously accumulated Mn sediment from their distribution system. The most effective way to do this is through a unidirectional flushing (UDF) program.

A unidirectional flushing (UDF) program would offer many benefits that conventional flushing does not provide. In UDF the line being flushed is isolated and the utility can calculate the velocity in the pipe and can control the number of pipe volumes flushed and the direction of water travel. The water containing the mobilized sediment is purged from an isolated location. This is performed throughout the system in a prescribed pattern. UDF is more thorough than conventional flushing which tends to purge some sediment, but in an uncontrolled manner, without control of the sediments origin, the velocity needed to mobilize the sediment or the number of pipe volumes needed to thoroughly clean the pipe segment.

Implementation of a UDF program would help minimize the number and intensity of colored water events and should eventually eliminate most of the sediment from the system. System wide flushing may not need to be an annual expense. UDF uses less water than conventional since not every hydrant needs to be flushed. Valve exercising is accomplished at the same time

As documented in the Water Research Foundation draft report, "Legacy of Manganese Accumulation in Water Systems: Assessment, Consequence and Prevention," routine system flushing costs approximately \$70,000 per year. Note this does not include the cost of treated water lost during flushing events.

A unidirectional flushing program study is recommended to develop annual UDF routes using hydraulic modeling and related software. A UDF system would cost approximately \$75,000 to design and \$25,000 in capital improvements to implement. However, implementation of a UDF program would help minimize the number and intensity of colored water events and should eventually eliminate most of the sediment from the system. It would eventually reduce the overall cost of flushing by eliminating the need to flush as well as using less water. System wide flushing may be reduced to an occasional need rather than an annual expense. The UDF is expected to have a payback period of 5 years with on-going costs at approximately \$50,000/annually.

Hydrant flushing should be coupled with hydrant inspection since most of the hydrants in the system will be visited during UDF flushing activities either for flowing or residual measurement. The remainder of the hydrants not inspection should be visited after UDF flushing is complete. Hydrant inspection and subsequent repair or replacement, as needed, will ensure that hydrants are operable when needed. Data collection recommendations for hydrant inspection and flushing can be found in Appendix 5-F.

Main Break and Leak Response

A main break and leak response program should be developed collect data from main breaks and leaks for further analysis of overall pipe condition in the distribution system. The main break and leak response and repair process can helpful data on distribution system assets from these

occurrences including verifying GIS data, operations data, and maintenance needs. The increased amount of main attribute and break data collected will allow a more refined assessment method for rehabilitation. A soil sample should be taken from a selection of main breaks across the system and sent to a geotechnical laboratory for analysis for corrosivity, moisture content, resistivity, etc. This soils information can be compiled across the system to determine the areas with the most externally corrosive conditions for pipe materials and appurtenances. By understanding the corrosive conditions across the system, repair materials and designs of new pipelines can account for the proper cathodic protection methods in such areas. A leak survey should be completed for the entire system every 3 years (1/3 of the system per year). Data collection recommendations for main break response can be found in Appendix 5-F.

Valve Exercising and Inspection

Valve exercise and inspection is a proactive maintenance practice with highly tangible results. Most systems are designed with a sufficient number of valves to isolate distribution system breaks. If those valves are found to be broken, stuck, buried, or otherwise not locatable the amount of time required to isolate and ultimately repair the break will increase as the crews must attempt to find working valves. All types of valves including isolation, hydrant, bypass and pressure reducing should be included in the program. Service valves such as curb stops and fire service valves should be incorporated into the future for a complete valve inspection and exercising program but are typically more difficult to implement due to continual consumption needs by consumers.

Inoperable valves found should be put on a rehabilitation or replacement list to be scheduled for maintenance. Critical valves such as those that affect hospitals, major employers, industrial users, large and/or old valves, and those in major intersections should be identified in the system and exercised more often. A properly completed valve exercising program will allow distribution valves to be used as needed, when needed. Data collection recommendations for valve exercising and inspection can be found in Appendix 5-F.

Backflow Prevention Inspection

To protect the water distribution system from backflow from residences and businesses, backflow prevention is a necessary element of any service connection. BOPU currently conducts inspection of backflow preventors for new residential taps and continuous commercial and industrial services. Having a way to collect the data in the field using an electronic system would reduce paperwork and office data entry involved in the inspection process. Data collection recommendations for backflow prevention inspection can be found in Appendix 5-F.

Customer Complaint Tracking

Data collection and mapping of customer complaints in GIS is recommended to monitor conditions in the distribution system, track operational issues, and determine the boundary of water quality events. Data collection recommendations for customer complaint tracking can be found in Appendix 5-F.

5.10.4 Preventative Maintenance Implementation

A detailed preventative maintenance plan and complete implementation of that plan is recommended for the distribution system. Preventative maintenance practices are proven to support system sustainability and increase remaining life of assets. If recommended preventative maintenance frequencies can not be met, a prioritized maintenance schedule should be developed to ensure that critical assets are being maintained regularly.

At a minimum the following components are recommended for implementation in the next 3 years:

- Enterprise asset management (EAM) and computerized maintenance management system (CMMS).
- Field data collection for increased accuracy and completeness of GIS data.
- Hydrant inspection and flushing program to be completed across the entire system once every 3 years (1/3 of the system per year).
- Valve inspection and exercising program to be completed across the entire system once every 3 years (1/3 of the system per year).
- Main break and leak response program and data collection to support the assessment method. A leak survey should be conducted across the entire system once every 3 years (1/3 of the system per year).
- Backflow prevention inspection program to be completed across the entire system once every 3 years (1/3 of the system per year).
- Customer complaint tracking program to support the flushing and water quality programs.

Levels of service goals for performance indicators such as breaks per 100 miles of pipe and customer complaints should be established and tracked to determine the improvement of system performance over time. Appendix 5-F contains examples of common water system performance indicators that are used for tracking level of service.

Volume 10 includes more details on the system hardware and software requirements to support a preventative maintenance plan including CMMS, EAM, and mobile requirements. A full time equivalent, a preventative maintenance technician, with previous asset management and GIS

experience, is recommended to lead and implement this program utilizing O&M staff for field work.

Recommended Implementation Phase 1

5-year Plan

Level of Service - Year 1

Develop Level of Service agreement

Develop performance indicators

Data Collection Implementation – Years 1 and 2

Hydrant flushing and inspection

Main break and leak response

Valve exercising and inspection

Backflow prevention inspection

Customer complaint tracking

Interface/Dashboard for Distribution Assessment Method - Year 3

Asset Management System Implementation – Years 3 through 5

Remaining life analysis

Main break analysis

Valuation analysis

Recommended Implementation Phase 2

10-year Plan

Performance Indicator Tracking – Annually from Year 2 on

Data Collection Tracking, Analysis, and Process Refinement – Annually from Year 2 on

Distribution Assessment Method Update – Annually from Year 3 on

Asset Management Integration with CIS - Year 5

5.10.5 Field Data Collection

Capturing information while in the field when pipe and appurtenances are already dug up will help in verifying GIS data while preforming preventative and emergency maintenance such as main break repairs, valve inspection, hydrant inspection, main replacement and rehabilitation maximizes time and efforts in the field for continual improvement of the data that BOPU relies

on daily. All attributes for the assets in the GIS geodatabase should be made available for verification and editing if needed. Monthly edits from the field should be merged back into the master GIS geodatabase.

A few of the GIS field data collection apps currently available for iOS (iPad/iPhone) are:

- ArcGIS Online (only online data compatible)
- Cartography (online/offline data compatible)
- Fulcrum App (online/offline data compatible)
- GIS Cloud (online/offline data compatible)
- GIS Roam / iGeoTrak (online/offline data compatible)
- GIS Kit and GIS Pro (online/offline data compatible)
- Trimble Connect (online/offline data compatible)

5.11 Improvement Recommendations

This section presents the improvement recommendations from the distribution, storage, and pumping analyses including:

- Infrastructure improvements to support system growth and rehabilitation.
- Pressure management to support system integrity and reduced main breaks.
- Monitoring improvements to support system operations and progress towards system optimization.
- Water age considerations to support system water quality.
- Distribution system assessment method implementation to support system rehabilitation.
- Preventative maintenance practices to support system sustainability and increased remaining asset life.

The improvement projects are all assigned a capital improvement ID with the following format, Planning Period-System-Project Number:

- Planning Period-
 - 2013 In Progress/Completed
 - NT Near-term (2014-2023)
 - o MT Mid-term (2024-2033)
 - LT Long-term (2034-2063)
- System-
 - PD Potable Distribution
- Project Number
 - Sequential number for each project

5.11.1 Infrastructure Improvements

Infrastructure improvements including transmission mains, distribution mains, storage reservoirs, and pump stations are recommended for each of the planning periods to support system growth and rehabilitation. The infrastructure improvements are shown on

Figure 5-20 identified by their capital improvement ID.

Transmission Mains

Transmission mains are those primarily 16-inches and larger that supply the distribution system from the potable water sources. The following transmission main projects are recommended to deliver water generally west to east through the system sorted by year installed.

Current (2013)

Improvement: Southern Water Transmission Main - Phase II

Improvement ID: 2013-PD-1

Year: 2013-2015

Description: Second phase of the Southern Delivery System from the end of Phase I at North Range Business Park south to the north end of Swan Ranch then east to Walterscheid Blvd and north to connect to the existing system into the existing system in the area of I-80 via S Parsley Blvd and Walterscheid. This project is currently under construction.

Scope: 38,120 ft of 42-inch; 12,850 ft of 18-inch; 5,360 ft of 16-inch; 5,180 ft of 12-inch

Purpose: To deliver water to the southern part of the system to serve growth areas and reinforce delivery of water from west to east. This project builds the backbone for serving development to the south.

Near-term (2014-2023)

Improvement Name: Southern Water Transmission Main - Phase III

Improvement ID: NT-PD-7

Year: 2015-2016

Description: Third phase of the Southern Delivery System from the end of Phase II at Walterscheid Blvd east to Avenue C north to E College Drive and connect into the existing system in the area of I-80 via Avenue C and E College Drive.

Scope: 10,640 ft of 36-inch; 6,220 ft of 30-inch; 9,370 ft of 20-inch; 6,290 ft of 16-inch.

Purpose: To deliver water to the southern part of the system to serve growth areas and reinforce delivery of water from west to east. This project continues building the backbone for serving development to the south.

Improvement Name: Southern Transmission Mains by 2023 (Year 2017)

Improvement ID: NT-PD-17

Year: 2017

Description: Transmission main extensions to connect portions of the Southern Transmission Main – Phases II and III.

Scope: 10,800 ft of 16-inch

Purpose: To provide connections between the Southern Transmission Mains to support growth and improve hydraulics between transmission mains.

Improvement Name: Southern Transmission Mains by 2023 (Year 2018)

Improvement ID: NT-PD-17

Year: 2018

Description: Main delivering water from Swan Ranch area to and from the Swan Ranch Reservoir No. 2. To be built in conjunction with Swan Ranch Reservoir No. 2.

Scope: 11,780 ft of 24-inch

Purpose: To deliver water to southwest areas of development including light to heavy industrial development and provide a way for water back feed from the Swan Ranch zone and storage to the City South zone.

Mid-term (2024-2033)

Improvement Name: Southern Transmission Mains by 2033

Improvement ID: MT-PD-6

Year: 2024-2033

Description: Main delivering water from Southern Water Transmission Main Phase III to the south along Avenue C and east along E Wallick Rd.

Scope: 5,210 ft of 24-inch; 41,860 ft of 18-inch; 29,000 ft of 16-inch

Purpose: To deliver water to the south and southeast parts of the system to serve growth areas, provide water to the Southeast pump station and continue developing delivery of water capabilities south along the S Greeley Hwy corridor.

Improvement Name: Southern Water Transmission Main - Phase IV

Improvement ID: MT-PD-12

Year: 2024-2033

Description: Mains delivering water from Southern Water Transmission Main – Phase III to the Sun Valley pressure zone.

Scope: 3,920 ft of 30-inch; 17,860 ft of 16-inch; 19,920 ft of 12-inch

Purpose: To deliver water to the eastern area of the distribution system to improve hydraulics through the system west to east and serve existing and future areas of development.

Long-term (2034-2063)

Improvement Name: Southern Transmission Mains by 2063

Improvement ID: LT-PD-5

Year: 2034-2063

Description: Mains delivering water throughout the southern area of the distribution system including the Chalk Bluff pressure zone and storage reservoir.

Scope: 28,400 ft of 18-inch

Purpose: To deliver water throughout the southern area of the distribution system to serve existing and future areas of development.

Distribution Mains

Distribution mains are those pipelines primarily less than 16-inches in diameter that deliver water from the transmission mains to the customers. The following distribution main projects are recommended for to deliver water to new developments or replacement due to the City or Wyoming Department of Transportation (WYDOT) projects sorted by year installed.

Current (2013)

Improvement Name: East Pershing Blvd from Dunn to Converse – City Project

Improvement ID: 2013-PD-2

Year: 2013

Description: A main replacement along E Pershing Blvd from Dunn Ave to Converse Ave. This is a City coordinated project funded by BOPU and is currently under construction.

Scope: 4,105ft of 12-inch

Purpose: To rehabilitate main coordinated with a street project.

Improvement Name: West Pershing from I-25 to Pioneer - WYDOT Project

Improvement ID: 2013-PD-3

Year: 2013

Description: A main replacement along W Pershing Blvd from I-25 to Pioneer Avenue. This is a WYDOT coordinated project funded by BOPU and was completed in the spring of 2013.

Scope: 3,187 ft of 12-inch

Purpose: To rehabilitate main coordinated with a street project.

Improvement Name: Snyder Avenue Reconstruction – City Project

Improvement ID: 2013-PD-5

Year: 2013

Description: A main replacement and upsize from 4- and 6-inch mains along Snyder Ave from W 24th St to W Pershing Blvd. This is a City coordinated project funded by BOPU and is currently under construction.

Scope: 3,640 ft of 8-inch

Purpose: To rehabilitate main coordinated with a street project.

Improvement Name: East 7th from Warren to Alexander

Improvement ID: 2013-PD-6

Year: 2013

Description: Replacement main along E 7th Street from Warren to Alexander. This project is currently under construction.

Scope: 2,435 ft of 8-inch

Purpose: To rehabilitate main coordinated with a BOPU rehab project.

Near-term (2014-2023)

Improvement Name: Logan Avenue from Nationway to Pershing – City Project

Improvement ID: NT-PD-9

Year: 2014

Description: Replacement main and upsize from 4- and 6-inch mains along Logan Avenue from Nationway to East Pershing Blvd. This is a City coordinated project funded by BOPU.

Scope: 4,330 ft of 8-inch

Purpose: To rehabilitate main coordinated with a street project.

Improvement Name: 19th Street (Central Ave to Morrie Ave) – City Project

Improvement ID: NT-PD-10

Year: 2015

Description: Replacement main and upsize from 4- and 6-inch to 8-inch mains along 19th Street from Central Ave to Morrie Ave. This is a City coordinated project funded by BOPU.

Scope: 3,097 ft of 8-inch

Purpose: To rehabilitate main coordinated with a street project.

Improvement Name: 19th Street (Snyder Ave to Central Ave) – City Project

Improvement ID: NT-PD-22

Year: 2016

Description: Replacement main and upsize from 4- and 6-inch to 8-inch mains and replacement of 24-inch main along 19th Street from Snyder Ave to Morrie Ave. This is a City coordinated project funded by BOPU.

Scope: 1,000 ft of 8-inch; 1,100 ft of 24-inch

Purpose: To rehabilitate main coordinated with a street project.

Improvement Name: Southern Distribution Mains by 2023 (Year 2015)

Improvement ID: NT-PD-18

Year: 2015

Description: A main extension to connect two 12-inch mains in the Swan Ranch area.

Scope: 3,680 ft of 12-inch

Purpose: To complete the distribution loop in Swan Ranch.

Improvement Name: Campstool Road from Frontier Refinery to Livingston

Improvement ID: NT-PD-12

Year: 2016

Description: Replacement main and upsize from 4-inch mains along Campstool Road from Frontier Refinery to Livingston Ave.

Scope: 5,020 ft of 8-inch

Purpose: To rehabilitate and upsize a main.

Improvement Name: Southern Distribution Mains by 2023 (Year 2017)

Improvement ID: NT-PD-18

Year: 2017

Description: Main extensions to connect portions of the Southern Transmission Main – Phases II and III.

Scope: 11,190 ft of 12-inch

Purpose: To provide connections between the Southern Transmission Mains to support growth and improve hydraulics between transmission mains.

Improvement Name: Northern Distribution Mains by 2023 (Year 2019)

Improvement ID: NT-PD-19

Year: 2019

Description: Main extensions to connect portions of the distribution system to the north between Powerhouse Rd and Converse Ave.

Scope: 7,540 ft of 12-inch

Purpose: To deliver water to previously unserved areas to provide service supporting growth and development.

Improvement Name: Southern Distribution Mains by 2023 (Year 2021)

Improvement ID: NT-PD-18

Year: 2021

Description: Main extensions to connect portions of the Southern Transmission Main – Phases II and III.

Scope: 21,050 ft of 12-inch

Purpose: To provide connections between the Southern Transmission Mains to support growth and improve hydraulics between transmission mains.

Improvement Name: Southern Distribution Mains by 2023 (Year 2022)

Improvement ID: NT-PD-18

Year: 2022

Description: Main extensions to connect portions of the Southern Transmission Main – Phase II and existing extensions.

Scope: 10,680 ft of 12-inch

Purpose: To provide connections between the Southern Transmission Mains to support growth and improve hydraulics between transmission mains.

Improvement Name: Southern Distribution Mains by 2023 (Year 2023)

Improvement ID: NT-PD-17

Year: 2023

Description: Mains delivering water from Swan Ranch Pump Station west.

Scope: 13,030 ft of 12-inch

Purpose: To deliver water to southwest areas of development including light to heavy industrial development.

Mid-term (2024-2033)

Improvement Name: Southern Distribution Mains by 2033

Improvement ID: MT-PD-7

Year: 2024-2033

Description: Mains delivering water throughout the southern area of the distribution system including the City South, Swan Ranch, Southeast, and Chalk Bluff pressure zones.

Scope: 121,300 ft of 12-inch

Purpose: To deliver water throughout the southern area of the distribution system to serve existing and future areas of development.

Improvement Name: Northern Distribution Mains by 2033

Improvement ID: MT-PD-10

Year: 2024-2033

Description: Mains delivering water to the northern area of the distribution system including the Sun Valley and new Northeast pressure zones.

Scope: 53,210 ft of 12-inch; 1,290 ft of 8-inch

Purpose: To deliver water throughout the northern area of the distribution system to serve existing and future areas of development.

Long-term (2034-2063)

Improvement Name: Southern Distribution Mains by 2063

Improvement ID: LT-PD-6

Year: 2034-2063

Description: Mains delivering water throughout the southern area of the distribution system including the Chalk Bluff pressure zone.

Scope: 35,060 ft of 12-inch

Purpose: To deliver water throughout the southern area of the distribution system to serve existing and future areas of development.

Improvement Name: Northern Distribution Mains by 2063

Improvement ID: LT-PD-8

Year: 2034-2063

Description: Mains delivering water to the northern area of the distribution system including the Northeast pressure zone.

Scope: 7,900 ft of 12-inch

Purpose: To deliver water throughout the northern area of the distribution system to serve existing and future areas of development.

Storage

Storage projects include constructing reservoirs to either replace existing storage due to condition or to support growth and the overall need for additional storage in the distribution system.

Near-term (2014-2023)

Improvement Name: Swan Ranch Reservoir No. 2 – 3 MG

Improvement ID: NT-PD-16

Year: 2017

Description: A 3 MG storage reservoir to add to the current 0.5 MG elevated storage in the Swan Ranch area. It should be well baffled and about 40 feet deep. In addition, the Swan Ranch Reservoir No. 2 should be piped with separated inlet and outlet openings to force flow through and maximize turnover of water. The alternative shown on the figure is a ground level reservoir approximately 1.8 miles west of the Swan Ranch area. Another potential alternative is an additional elevated reservoir closer to the Swan Ranch area that would have a shorter feed/draw line reducing water age within that pipeline.

Scope: 3 MG Storage Reservoir

Purpose: To provide a new reservoir for storage of potable water to meet peak hour, fire flow and emergency demands in the developing Swan Ranch area and downstream pressure zones. Between this reservoir and the replacement Round Top Storage Reservoir No.2 near-term storage requirements for the distribution system can be met with the abandonment of the existing Round Top Storage Reservoir.

Improvement Name: Round Top Storage Reservoir No. 2 - 5 MG

Improvement ID: NT-PD-13

Year: 2019

Description: A 5 MG storage reservoir to replace the existing Round Top reservoir. It should be well baffled and about 40 feet deep. In addition, the replacement Round Top Storage Reservoir No. 2 should be piped with separated inlet and outlet openings to force flow through and maximize turnover of water.

Scope: 5 MG Storage Reservoir

Purpose: To provide a new reservoir for storage of potable water to meet peak hour, fire flow and emergency demands. This reservoir should contain a separate volume of water around 0.25 MG not accounted for in the 5 MG to be used solely to meet chlorine contact time for the groundwater fed to it from the well fields to meet 4-log inactivation for viruses. Between this reservoir and the Swan Ranch Storage Reservoir No. 2 near-term storage requirements for the distribution system can be met with the abandonment of the existing Round Top Storage Reservoir.

Mid-term (2024-2033)

Improvement Name: Southeast Storage Reservoir – 3 MG

Improvement ID: MT-PD-8

Year: 2024-2033

Description: A 3 MG storage reservoir to add to the current storage in the City South zone. It should be well baffled and about 40 feet deep. In addition, the Southeast Storage Reservoir should be piped with separated inlet and outlet openings to force flow through and maximize turnover of water. The alternative shown on the figure is an elevated reservoir to the east of the City South zone.

Scope: 3 MG Storage Reservoir

Purpose: To provide a new reservoir for storage of potable water to meet peak hour, fire flow and emergency demands in the developing City South area and downstream pressure zones. This storage reservoir enables the system to meet mid-term storage requirements.

Long-term (2034-2063)

Improvement Name: Chalk Bluff Storage Reservoir – 2 MG

Improvement ID: LT-PD-7

Year: 2034-2063

Description: A 2 MG storage reservoir for the Chalk Bluff pressure zone. It should be well baffled and about 40 feet deep. In addition, the Chalk Bluff Storage Reservoir should be piped with separated inlet and outlet openings to force flow through and maximize turnover of water. The alternative shown on the figure is a ground level reservoir to the south of the Chalk Bluff zone.

Scope: 2 MG Storage Reservoir

Purpose: To provide a new reservoir for storage of potable water to meet peak hour, fire flow and emergency demands in the Chalk Bluff and downstream pressure zones. This storage reservoir enables the system to meet long-term storage requirements.

Pump Stations

Pump station improvements will help support growth and increased demands in the system including the higher pump stations. The existing pump stations can meet current (2013) demands but The Pointe and North Range Business Park Pump Stations should be evaluated further for their ability to meet all future demands including fire flow requirements with firm capacity. Pump upgrades may be necessary after the evaluation; however, no capital improvements are currently recommended as the pumps can provide higher flow if the pumps are operated further out on their curve. The fire flow demands in each pumped pressure zone are assumed based on zoning and should be validated based on actual building construction and size during the pump station evaluations.

Near-term (2014-2023)

Improvement Name: Swan Ranch Pump Station

Improvement ID: NT-PD-15

Year: 2014

Description: A pump station to provide service from the Southern Transmission Main – Phase II to the Swan Ranch pressure zone.

Scope: 4,000 gpm firm capacity pump station.

Purpose: To provide potable water service to the Swan Ranch area and for filling the existing and future Swan Ranch Storage Reservoirs.

Improvement Name: Buffalo Ridge Pump Station Upgrade

Improvement ID: NT-PD-21

Year: 2016

Description: A pump station upgrade to provide redundancy and future pressure sustainability.

Scope: Additional 2,000 gpm pump installed in or next to the existing pump station.

Purpose: To provide redundancy from Buffalo Ridge Storage Reservoir and future pressure boosting in the City North pressure zone during peak demand periods.

Mid-term (2024-2033)

Improvement Name: Chalk Bluff Pump Station

Improvement ID: MT-PD-5

Year: 2024-2033

Description: A pump station to provide service from the City South pressure zone to the Chalk Bluff pressure zone.

Scope: 3,500 gpm firm capacity pump station.

Purpose: To provide potable water service to the higher elevation area in the southeast area of the distribution system.

Improvement Name: Northeast Pump Station

Improvement ID: MT-PD-9

Year: 2024-2033

Description: A pump station to provide service from the City North pressure zone to the Northeast pressure zone.

Scope: 2,500 gpm firm capacity pump station.

Purpose: To provide potable water service to the higher elevation area in the northeast area of the distribution system. This pump station would also help alleviate low peak hour pressures along Panorama Drive.

Improvement Name: Southeast Pump Station

Improvement ID: MT-PD-13

Year: 2024-2033

Description: A pump station to provide service from the City South pressure zone to the Southeast pressure zone and pump out of the Southeast Storage Reservoir as needed during high demand periods.

Scope: 3,500 gpm firm capacity pump station.

Purpose: To provide potable water service to the higher elevation area in the southeast area of the distribution system and pump out of the Southeast Storage Reservoir as needed.

Long-term (2034-2063)

Currently no long-term pump station projects are recommended.

Other Capital Improvements

Other capital improvement and facilities planned include the following items.

Improvement Name: Dillon Avenue Water Dispensing Station

Improvement ID: NT-PD-5

Year: 2014

Description: An improved water dispensing station nearby the BOPU shop on Dillon Avenue.

Scope: Water dispensing station.

Purpose: To provide an improved dispensing location of potable water for contractors and other bulk water users to fill their portable reservoirs.

Improvement Name: Demolish Round Top WTP Building

Improvement ID: NT-PD-14

Year: 2020

Description: This project includes demolishing the Round Top WTP building.

Scope: Demolish an abandoned WTP building.

Purpose: To remove an abandoned building at the Round Top site.

Improvement Name: Reimburse Oversized Water Mains

Improvement IDs: NT-PD-2 / MT-PD-2 / LT-PD-2

Year: 2014-2063

Description: A fund to provide re-imbursement to developers for oversized water mains due to BOPU direction for providing additional capacity in their distribution systems.

Purpose: To provide available funds to pay back developers for oversized water mains to improve system reliability and provide capacity to future growth areas.

Improvement Name: Special Water Projects

Improvement IDs: NT-PD-3 / MT-PD-3 / LT-PD-3

Year: 2014-2063

Description: Special unforeseen distribution projects that come up such as major distribution system repairs, storage reservoir rehabilitation, and replacement or rehabilitation of mains coordinated with street projects.

Purpose: To provide available funds for special water projects as described above.

5.11.2 Pressure Management

Pressure management supports system integrity by reducing the prolonged pressure on the infrastructure while still providing adequate pressures during high demand periods and fire flows. Pressure management reduces the factors that lead to main breaks including higher sustained and surge pressures. Recommended PRV stations included for the following planning periods create new pressure zones which further the pressure management objectives in the system.

Current (2013)

Improvement Name: Pressure Management Phase I – Dell Range Zone

Improvement ID: 2013-PD-4

Year: 2013

Description: A pressure management implementation including four PRV stations including two on Converse Blvd, to create the Dell Range Pressure Zone. This project was completed in the spring of 2013.

Scope: Four PRV Stations.

Purpose: To provide pressure management to reduce high pressures aimed at reducing main breaks.

Near-term (2014-2023)

Improvement Name: Pressure Management Phase II – City North/Central/South Zones

Improvement ID: NT-PD-11

Year: 2017

Description: A pressure management implementation with four PRV stations including ones on W Pershing Blvd, the 30-inch Hynds line, Parsley Blvd, and Walterscheid Blvd to create the City North, City Central, and City South pressure zones. Locations and design for these PRV stations could be established during Southern Water Transmission Main - Phase II construction and implemented a year or two later to determine the impact of the pressures in the system due to the significant connections that this improvement project brings to the existing system.

Scope: Four PRV Stations

Purpose: To provide pressure management to reduce high pressures aimed at reducing main breaks.

Improvement Name: Pressure Management Phase III – Additional Near-term Pressure Zones

Improvement ID: NT-PD-20

Year: 2016, 2022, 2023

Description: A pressure management implementation with four PRV stations including one feeding Sun Valley (2016), one feeding City Central (2016) and two feeding City South (2022, 2023) pressure zones.

Scope: Four PRV Stations

Purpose: To provide pressure management to reduce high pressures aimed at reducing main breaks.

Mid-term (2024-2033)

Improvement Name: Pressure Management Phase IV – Mid-term Pressure Zones

Improvement ID: MT-PD-11

Year: 2024-2033

Description: A pressure management implementation with eight PRV stations including two feeding Sun Valley, one feeding City Central, four feeding City South, and one feeding Chalk Bluff pressure zones.

Scope: Eight PRV Stations

Purpose: To provide pressure management to reduce high pressures aimed at reducing main breaks.

Long-term (2034-2063)

Improvement Name: Pressure Management Phase V – Long-term Pressure Zones

Improvement ID: LT-PD-9

Year: 2034-2063

Description: A pressure management implementation with two PRV stations including one feeding City South and one feeding Southeast pressure zones.

Scope: Two PRV Stations

Purpose: To provide pressure management to reduce high pressures aimed at reducing main breaks.

5.11.3 System Monitoring

System monitoring is recommended to support system operations and progress towards system optimization. By collecting pressure, flow, level, and water quality data over time, trends can be developed and reviewed upon which operations improvements can be made to improve system performance and optimize use of energy and other resources. By understanding system operations using data and optimization, a more sustainable system can be obtained by removing unnecessary stresses and maximizing hydraulic benefits provided by the flexibility of existing facilities.

Existing data collected from the system should be take advantage of through annual analysis and use in hydraulic modeling. Additional distribution system monitoring equipment and SCADA infrastructure should be installed to collect data from existing and future facilities. Recommended system monitoring locations are presented in Table 5-37. Approximately \$75,000/yr should be budgeted in the near-term to implement new system monitoring capabilities at existing facilities (the cost of these improvements is covered in Volume 10). Future capital projects such as transmission mains, PRV stations, or storage reservoirs should include system monitoring as part of the design and construction of the improvement.

An operations dashboard and analysis platform is recommended for implementation in the nearterm to use this information for day-to-day operations and longer-term optimization of the distribution system.

Improvement Name: Distribution System Monitoring

Improvement IDs: NT-PD-4 / MT-PD-4 / LT-PD-4

Year: 2014-2063

Description: Installation of system monitoring equipment and SCADA infrastructure to collect pressure, flow, level, and water quality data at select locations in the system.

Purpose: To provide system performance data for day-to-day operations and analysis of optimization opportunities.

5.11.4 Water Age Considerations

Water quality due to water age should be considered when developing distribution system improvements and optimizing operations. Of particular concern is maintaining disinfectant residuals, in BOPU's case it would residual free chlorine levels, and minimizing disinfection by-products (DBPs). Generally as water age increases, disinfectant residuals decrease and disinfection by-products increase. The goal is to have at least a detectable amount of disinfectant residual and as little of DBPs as possible at all locations in the system. In the past, there have been reports of low to no chlorine residual near the Crow Creek Water Reclamation Facility (CCWRF). BOPU has not reported any major DBP issues.

Storage reservoirs and large transmission or distribution mains that are far from the source will have increased water age, especially when they are first built and the demands in the system have not increased yet as development catches up. Water age should be estimated using the hydraulic model to locate areas of potential water quality concerns. Then water quality system monitoring should be conducted in these areas of potential concerns using manual or automatic sampling equipment as discussed in Section 5.8.

Yearly water age hydraulic modeling should be completed based on updates to water demands from billing records and a water quality system monitoring program to understand the water age and quality within the growing distribution system.

Particular areas of concern may include:

- Existing Round Top Reservoir with unusual geometry and large volume sometimes has water quality issues during low demand periods. This has been partially addressed with valving at the "X" during the fall through winter seasons. The existing Round Top Reservoir is recommended for replacement in the near-term with a smaller reservoir that should have a proper passive (baffling) or active mixing (solar mixer, etc.) design.
- Large transmission and distribution mains as well as storage reservoirs in the southern area of the system including the Southern Transmission Mains. Sampling stations with remote monitoring capabilities should be installed at a minimum at the storage

reservoirs and preferably along the transmission mains as well to determine residual chlorine levels within the expansion areas until the demand increases as customers tap into the system.

 Extents of the system including the Sun Valley pressure zone. Areas of the distribution system downstream of PRVs will not always have low age water since the PRVs are operated to open in a sequence based on downstream pressure. If the area immediately downstream of a PRV that is lower in the sequence, it will typically not open unless during very high demands (peak hour or fire flow) and will have increased water age the rest of the time. PRV operations should evaluated to break up these potentially more stale water areas and open more PRVs during average demands.

Capital improvements for water age and quality considerations are included as part of other capital improvement projects.

5.11.5 Assessment and Rehabilitation

Continued assessment and rehabilitation is vital to the sustainability of the distribution system. The distribution system assessment method described in Section 5.9 should be implemented in the next two years to support data-based system rehabilitation. This assessment method will aid the yearly selection of rehabilitation pipe segments based on both probability of failure and consequence of failure factors.

The distribution main rehabilitation program begun 10 years ago should be continued. Continue replacing 4- and 6-inch aging cast iron water mains with 8-inch PVC mains for rehabilitation purposes and fire flow improvements. Cast iron mains historically have the greatest number main breaks per mile in the system and receive a higher scoring in the assessment method.

The target for main rehabilitation is recommended to be 2 miles per year from 2014 to 2017 and then increased to 3 miles per year from 2018 onwards including any City projects that present opportunities for rehabilitation along with transportation improvements. At 3 miles per year, the entire existing system replacement cycle would be approximately 180 years. Future system improvements should last longer due to increased quality of materials and installation; however, the replacement rate should be evaluated to be increased again during the next water master plan. Identified near-term rehabilitation projects from 2013 to 2018 are shown on

Figure 5-20. Additional pipe segments should be added to each of the years as necessary to reach the main rehabilitation targets. A separate list of additional distribution main rehabilitation projects has been identified for 2014.

Improvement Name: Distribution Main Rehabilitation Program (Rehab/Replace/Upsize)

Improvement IDs: NT-PD-1 / MT-PD-1 / LT-PD-1

Year: 2014-2063

Description: Replacement, upsizing or lining of distribution mains.

Purpose: To provide continued rehabilitation to aging water mains and improve system performance including fire flow.

Improvement Name: FY 14 Distribution Main Rehabilitation B List

Improvement IDs: NT-PD-8

Year: 2014

Description: Replacement, upsizing or lining of select distribution mains in 2014.

Purpose: To provide rehabilitation to aging water mains and improve system performance including fire flow in the near-term.

5.11.6 Preventative Maintenance

A detailed preventative maintenance plan and complete implementation of that plan is recommended for the distribution system. Preventative maintenance practices are proven to support system sustainability and increase remaining life of assets.

At a minimum the following components are recommended for implementation in the next 3 years:

- Enterprise asset management (EAM) and computerized maintenance management system (CMMS).
- Field data collection for increased accuracy and completeness of GIS data.
- Hydrant inspection and flushing program to be completed across the entire system once every 3 years (1/3 of the system per year).
- Valve inspection and exercising program to be completed across the entire system once every 3 years (1/3 of the system per year).
- Main break and leak response program and data collection to support the assessment method. A leak survey should be conducted across the entire system once every 3 years (1/3 of the system per year).

5.11 Improvement Recommendations

- Backflow prevention inspection program to be completed across the entire system once every 3 years (1/3 of the system per year).
- Customer complaint tracking program to support the flushing and water quality programs.

Levels of service goals for performance indicators such as breaks per 100 miles of pipe and customer complaints should be established and tracked to determine the improvement of system performance over time. Appendix 5-F contains examples of common water system performance indicators that are used for tracking level of service.

Due to reoccurring legacy manganese release events in the distribution system, a unidirectional flushing instead of conventional flushing is recommended for increased effectiveness of flushing and reduced lost water. Therefore, a unidirectional flushing program study is recommended to develop UDF routes using hydraulic modeling and related software. UDF also helps support the valve exercising program due to the use of isolation valves for maximizing flushing velocities in specific areas of the system.

Volume 10 includes more details on the system hardware and software requirements to support a preventative maintenance plan including CMMS, EAM, and mobile requirements. A full time equivalent, a preventative maintenance technician, with previous asset management and GIS experience, is recommended to lead and implement this program utilizing O&M staff for field work.

Improvement Name: Unidirectional Flushing Program Study

```
Improvement IDs: NT-PD-6
```

Year: 2015

Description: Hydraulic modeling and UDF route development study develop to create a unidirectional flushing program.

Purpose: To support preventative maintenance of the distribution system including sediment accumulation removal, improved water quality and restored capacity.

5.11 Improvement Recommendations

(THIS PAGE WAS INTENTIONALLY LEFT BLANK)

5.12 Capital Improvement Plan

From the recommended improvements in Section 5.11, a capital improvement plan was developed outlining the implementation phasing and cost of the distribution system projects.

Figure 5-20 presents the capital improvement projects in the distribution system.

5.12.1 Cost Estimating Assumptions

Cost estimates were developed for each of the capital improvement projects yearly from 2015 to 2023 and as a total cost for mid-term (2024-2033) projects. 2013 and 2014 are currently budgeted years and the cost estimates from the financial projections provided by BOPU were not changed except for the addition of two projects (NT-PD-15 and NT-PD-17) in 2014. Cost estimates were not provided for the long-term projects since they too far in the future to be certain of their implementation or costs.

The cost estimates developed are order of magnitude costs to give an indication of probable cost to implement. It is normally expected that an estimate of this type would be accurate within +50% or -30%. A 30% design contingency was applied to the total construction costs and a 3.5% per year escalation rate to the construction year was used to account for inflation. Table 5-38 presents the 2013 unit pipe costs used for the estimates which include a fittings allowance, bedding materials, and installation costs. Appendix 5-G contains more detailed cost estimates for the pipeline projects.

Pipe Size (inches)	Pipe Material	2013 Unit Cost (\$/lf) ⁽¹⁾
8	PVC	\$120
12	PVC	\$135
16	PVC	\$150
18	PVC	\$175
20	PVC	\$180
21	PVC	\$190
24	PVC/DIP	\$275
30	Steel/DIP	\$325
36	Steel/DIP	\$350
42	Steel/DIP	\$375

Table 5-38 Pipe Material and Unit Cost Assumptions

⁽¹⁾ Unit costs include a fittings allowance, bedding materials, and installation.

5.12.2 Capital Improvement Plans by Planning Period

Table 5-39, Table 5-40, and Table 5-41 present the near-term (2014-2023), mid-term (2024-2033), and long-term (2034-2063) capital improvement plans for potable water storage and distribution, respectively. Table 5-39 includes 2013 projects for reference but those projects are not considered part of the near-term capital improvement plan as they are currently in progress or under construction. The 2014 budget is based on the actual BOPU budget and uses cost estimates established by BOPU. Prior to these capital improvement projects being implemented, the scope and sizing of each project should be verified via pre-design investigation and planning including field confirmations, hydraulic modeling, cost estimating, and siting and/or alignment studies.

				Near-te	enn (2014-2023) Recommen	ded Capital In	iprovement P	lan					
			Adjusted Budget	Proposed Budget	Projection	Projection	Projection	Projection	Projection	Projection	Projection	Projection	Projection	Near-term Expenditures
ltem #	CIP ID	Project	FY 2013	FY 2014 ⁽⁵⁾	FY 2015	FY 2016	FY 2017	FY 2018	FY 2019	FY 2020	FY 2021	FY 2022	FY 2023	Based on Year of Construction Dollars
1	2013-PD-1	Southern Water Transmission Main - Phase II (In Progress)	\$25,202,039	\$4,261,200										\$4,261,200
2	2013-PD-2	East Pershing Blvd from Dunn to Converse - City Project (In Progress)	\$1,513,220											-
3	2013-PD-3	West Pershing Blvd from I-25 to Pioneer - WYDOT Project (Completed)	\$536,265											-
4	2013-PD-4	Pressure Management Project Phase I - Dell Range Zone (Completed)	\$1,414,528											-
5	2013-PD-5	Snyder Avenue Reconstruction - City Project (In Progress)	\$853,900											-
6	2013-PD-6	East 7th St from Warren to Alexander (In Progress)	\$461,400											-
7	NT-PD-1	Distribution Main Rehabilitation Program (Rehab/Replace/Upsize)	\$1,879,137	\$1,292,400	\$2,000,000	\$2,070,000	\$2,142,500	\$2,217,500	\$2,295,100	\$2,375,400	\$2,458,500	\$2,544,500	\$2,633,600	\$22,029,500
8	NT-PD-2	Reimburse Oversized Water Mains ⁽¹⁾	\$519,483		\$300,000	\$310,500	\$321,400	\$332,600	\$344,200	\$356,200	\$368,700	\$381,600	\$395,000	\$3,110,200
9	NT-PD-3	Special Water Projects ⁽¹⁾	\$219,390	\$400,000	\$400,000	\$414,000	\$428,500	\$443,500	\$459,000	\$475,100	\$491,700	\$508,900	\$526,700	\$4,547,400
10	NT-PD-4	Distribution System Monitoring						Costs in \	/olume 10					-
11	NT-PD-5	Dillon Avenue Water Dispensing Station		\$50,000										\$50,000
12	NT-PD-6	Unidirectional Flushing Program Study			\$75,000									\$75,000
13	NT-PD-7	Southern Water Transmission Main - Phase III		\$1,800,000	\$14,276,000									\$16,076,000
14	NT-PD-8	FY 14 Distribution Main Rehabilitation B List		\$1,170,600										\$1,170,600
15	NT-PD-9	Logan Ave from Nationway to Pershing - City Project	\$75,000	\$1,540,000										\$1,540,000
16	NT-PD-10	19th St from Central to Morrie - City Project			\$635,500									\$635,500
17	NT-PD-11	Pressure Management Phase II - City North/Central/South Zones ⁽²⁾					\$2,000,000							\$2,000,000
18	NT-PD-12	Campstool Road from Frontier Refinery to Livingston				\$922,500								\$922,500
19	NT-PD-13	Round Top Storage Reservoir No. 2 - 5 MG							\$10,000,000					\$10,000,000
20	NT-PD-14	Demolish Round Top WTP Building ⁽²⁾								\$2,000,000				\$2,000,000
21	NT-PD-15	Swan Ranch Pump Station - 4,000 gpm		Cost included in Item 1										-

Table 5-39 (2011 2022) D dod Canital In Neer to

5.12 Capital Improvement Plan

			Adjusted Budget	Proposed Budget	Projection	Projection	Projection	Projection	Projection	Projection	Projection	Projection	Projection	Near-term Expenditures
ltem #	CIP ID	Project	FY 2013	FY 2014 ⁽⁵⁾	FY 2015	FY 2016	FY 2017	FY 2018	FY 2019	FY 2020	FY 2021	FY 2022	FY 2023	Based on Year of Construction Dollars
22	NT-PD-16	Swan Ranch Storage Reservoir No. 2 - 3 MG ^(2/4)						\$6,000,000						\$6,000,000
23	NT-PD-17	Southern Transmission Mains by 2023 ⁽²⁾					\$3,864,000	\$6,768,000						\$10,632,000
24	NT-PD-18	Southern Distribution Mains by 2023 ^(2/3)			\$972,000		\$3,089,000				\$6,316,000	\$2,905,000	\$4,066,000	\$17,348,000
25	NT-PD-19	Northern Distribution Mains by 2023 ^(2/3)							\$2,172,000					\$2,172,000
26	NT-PD-20	Pressure Management Phase III - Additional Near-term Pressure Zones ^(2/4)					\$1,000,000					\$500,000	\$500,000	\$2,000,000
27	NT-PD-21	Buffalo Ridge Pump Station Upgrade - 2,000 gpm				\$1,000,000								\$1,000,000
28	NT-PD-22	19th Street (Snyder to Central) – City Project				\$430,500								\$430,500
	1	Total Projects by Year	\$32,674,400	\$10,514,200	\$18,658,500	\$5,147,500	\$12,845,400	\$15,761,600	\$15,270,300	\$5,206,700	\$9,634,900	\$6,840,000	\$8,121,300	\$108,000,400
												Averag	e Cost per Year (over 10 years)	\$10,800,000

⁽¹⁾ This project can involve unused funds being transferred over year to year. Value shown is estimated maximum expenditure per year (including escalation) which does not estimate transferred funding from previous year.

⁽²⁾ This project could be delayed to future years due to actual development or budgeting priority; year shown is only representative of anticipated development timing or system need and project sequencing, actual project timing could vary.

⁽³⁾ This project is system growth-related to serve future development areas with a majority of the project paid by developers (assumed 100% of shown cost) and BOPU participating in infrastructure oversizing costs, if necessary.

⁽⁴⁾ This project is system growth-related to serve future development areas with a majority of the project by developers paid (assumed 80% of shown cost) and BOPU participating in infrastructure oversizing costs (assumed 20% of shown cost), if necessary.

⁽⁵⁾ The proposed FY2014 budget does not include funds carried over from FY 2013 for projects that were not yet completed.

Final Volume 5 – Potable Water Storage and Distribution

5.12 Capital Improvement Plan

Item #	CIP ID	Project	Cost Estimate (Based on 2028 Dollars)
1	MT-PD-1	Distribution Main Rehabilitation Program (Rehab/Replace/Upsize)	\$31,977,400
2	MT-PD-2	Reimburse Oversized Water Mains ⁽¹⁾	\$4,795,600
3	MT-PD-3	Special Water Projects ⁽¹⁾	\$6,395,000
4	MT-PD-4	Distribution System Monitoring	Costs in Volume 10
5	MT-PD-5	Chalk Bluff Pump Station - 3,500 gpm ^(2/4)	\$3,000,000
6	MT-PD-6	Southern Transmission Mains by 2033 ⁽²⁾	\$32,212,000
7	MT-PD-7	Southern Distribution Mains by 2033 ^(2/3)	\$41,490,000
8	MT-PD-8	Southeast Storage Reservoir - 3 MG ^(2/4)	\$7,500,000
9	MT-PD-9	Northeast Pump Station - 2,500 gpm ^(2/4)	\$2,000,000
10	MT-PD-10	Northern Distribution Mains by 2033 ^(2/3)	\$18,592,000
11	MT-PD-11	Pressure Management Phase IV - Mid-term Pressure Zones ^(2/4)	\$5,000,000
12	MT-PD-12	Southern Water Transmission Main - Phase IV ⁽²⁾	\$16,829,000
13	MT-PD-13	Southeast Pump Station - 3,500 gpm ^(2/4)	\$3,000,000
		Total Projects	\$173,791,000
		Average Cost per Year (over 10 years)	\$17,379,100

 Table 5-40

 Mid-term (2024-2033) Recommended Capital Improvement Plan

⁽¹⁾ This project can involve unused funds being transferred over year to year. Value shown is estimated maximum expenditure per year (including escalation) which does not estimate transferred funding from previous year.

⁽²⁾ This project could be delayed to future years due to actual development or budgeting priority; year shown is only representative of anticipated development timing or system need and project sequencing, actual project timing could vary.

⁽³⁾ This project is system growth-related to serve future development areas with a majority of the project paid by developers (assumed 100% of shown cost) and BOPU participating in infrastructure oversizing costs, if necessary.

⁽⁴⁾ This project is system growth-related to serve future development areas with a majority of the project by developers paid (assumed 80% of shown cost) and BOPU participating in infrastructure oversizing costs (assumed 20% of shown cost), if necessary.

		Table 5-41			
Long-term (2034-2063)	Recommended	Capital Im	provement	Plan

ltem	CIP	
#	ID	Project
1	LT-PD-1	Distribution Main Rehabilitation Program (Rehab/Replace/Upsize)
2	LT-PD-2	Reimburse Oversized Water Mains ⁽¹⁾
3	LT-PD-3	Special Water Projects ⁽¹⁾
4	LT-PD-4	Distribution System Monitoring
5	LT-PD-5	Southern Transmission Mains by 2063 ⁽²⁾
6	LT-PD-6	Southern Distribution Mains by 2063 ^(2/3)
7	LT-PD-7	Chalk Bluff Storage Reservoir - 2 MG ^(2/4)
8	LT-PD-8	Northern Distribution Mains by 2063 ^(2/3)
9	LT-PD-9	Pressure Management Phase V - Long-term Pressure Zones ^(2/4)

⁽¹⁾ This project can involve unused funds being transferred over year to year.

⁽²⁾ This project could be delayed to future years due to actual development or budgeting priority; year shown is only representative of anticipated development timing or system need and project sequencing, actual project timing could vary.

⁽³⁾ This project is system growth-related to serve future development areas with a majority of the project paid by developers and BOPU participating in infrastructure oversizing costs, if necessary.

⁽⁴⁾ This project is system growth-related to serve future development areas with a majority of the project paid by developers and BOPU participating in infrastructure oversizing costs, if necessary.

Figure 5-20 Potable Storage and Distribution Capital Improvement Projects

(available in the inside back cover pocket of this binder)

Appendices

Appendices

Volume 5 – Potable Water Storage and Distribution

Appendices

(THIS PAGE WAS INTENTIONALLY LEFT BLANK)

Appendices

Appendix 5-A Existing Operations Information

- Pump Curves and Related Information
- PRV Settings

KEYSTONE VALVE SPECIALISTS

BUFFALO RIDGE VALL

-Keystone Valve-Keystone Actuators & Controls-Keystone Ballcentric Plug-SVF-

-Golden Anderson-Fabri Valve-Prince Check-Dynaquip Ball-Flow Design Balancing-

RTMAR TO BRMAR = 58' BRMAR TO BRAMA = 70'	$\frac{GPM \times HORe}{3960 \times .7} = HP$
Hu Hu	1 EV X CV 56° 2° Lune 7° 0° 1° 1°
AURORA CENTRIFUGAL RUND (AURORA IER) 208	21" Dia manhole in roof KONT
TYPE OJV GAM 2000 MRLEMOR	E - No 32129 + SHAPPIN HWKS
ORD 66-7034 303 311 SIZE 8X8X118 303 A	55EMBLY \$3500
REM 1800	TEN COTO .
USMOTORS GSAMP /SOMP	NOTOR 3588
ELECTRIC	OI PAUMER MAGNATER
HEAT	KU
VENTLATION Keystone Sales – Denver Aurora, CO 800 Fax. No. 303-343-0930	3250 Quentin St., Suite 126 11 303-343-0425 800-525-0561

Section **340/360** Page **434**

Date January 2001

Supersedes Section 340/360 Page 434 Dated January 1999

6 x 6 x 12B SERIES 340 OR 360

ENCLOSED IMPELLER

1750

RPM

Dec	21 01 09:49a	States West I	Water Res	3076347851	p.1
		1904 Ea Cheyen Telepho	STATE ER RESOUR ast 15th Street me, Wyoming 82001 one: (307) 634-7848	S WEST CES CORPORATION P.O. Box 2092 Cheyenne,Wyoming 82003 Fax: (307) 634-7851	çana en k
		Facsimile 3	Fransmissior	Sheet	
	. 53	Fax Num	aber (307) 634-	7851	
	Date: 12/21/0	/	* of Pages Follo	wing: Z	
	To: JEFF T	2		1 x x 9 ₂ .	- e e e e
	From: BRANDO	N .		* •	
	Comments: HEC	E IS THE	PUMP CURIE	FOR DEER AVE.	
	THE IMPELL	ARS SHOUL	LD NOT BE	TRIMMED AS PER	
	SUBMITTAL				
		5			

-

1.000

ne i	82001-1 Casper 307-234-530 307-234-340	718 9 7	,	<u>Sterling Fluid Sys</u> P O Box 7028 India: Fax: 317-924-7388 I	<u>items (USA), ind</u> napolis, IN 46207 Ph 317-925-9661	2005 Dr M L King Jr St -7026 Page No : 2
ype: ump lom npelli uive npelli	C - E Model: Pear Speed: 1750 er Dia.: 9.56 No.: 3115 er No.:	ind Suction Ck less - C1040A RPM inch 1020	ose Coupled Genera	duote No. : 2709-2 Il Purposa	2 Iten Mai Flui Ter Viso Sp.	Date : 15th May 1998 n : Item1 rket : Basic Selection id: Water nperature: 70 °F cosity: 1 cStokes Gravity: 1
120 100 90						Duty Flow 650 USgpm Duty Head 80 ft Dlameter 9.56 Inch Power Required 15.58 hp NPSH Required 10.302 ft Efficiency 61.6 %
40 20 40 30						や Peak Power 19.94 hp Tolerance Hydraulic Institute
20 10 25 20 15						
10 5 0 1 Flo	w	200 Head (ft)	400 600 Flow - USgp Pump Efficien (%)	800 m cy Power Required (hp)	1000 120 NPSH Requir (ft)	xx .
26 40 52 63 75 86 98	0.0 99.7 95.2. 20.8 36.4 51.9 57.5 53.1 39.8	93.42 93.31 91.77 88.45 83.16 75.88 66.70 55.67 42.70	0.0 64.5 72.9 78.4 81.4 81.5 76.1 70.8 59.4	5,30 10.58 12,88 14,83 16,41 17,68 18,71 19,51 19,94	4.61 6.08 7.77 9.99 13.06 17.30 23.02 30.55	

- Card

82001-1718 Casper ne : 307-234-5309 : 307-234-3407		Sty P C Faz	erling Fluid System D Box 7026 Indianap K: 317-924-7388 Ph	n <u>s (USA), inc. 200</u> 1018s, IN 46207-7026 317-925-9661	D5 Dr M L King Jr St Page No : 2
eçt :		Qu	ote No.: 2709-2		Date: 15th May 1998
ype: C - End ump Model: Peerles om. Speed: 1750 mpeller Dia.: 9.56 urve No.: 311502 mpeller No.:	Suction Close (s - C1040A RPM Inch 0	Coupled General Pur	rpose	ftem : Market : Fluid: Tempera Viscosity Sp. Grav	ttem1 Basic Selection Water ature: 70 °F r: 1 cStokes rity: 1
<u>.</u>		-0+1915-191-01-01-01-01-01-01-01-01-01-01-01-01-01			1
120 100 80 60				100 60 %	Duty Flow650 USgpmDuty Head80 ftDlameter9.56 InchPower Required16.58 hpNPSH Required10.302 ftEfficiency81.6 %
40				20 0	Peak Power 19.94 hp Tolerance Hydraulic Institute
30 20 10 25					
20					
0	00 400	600	800 1	000 1200	
1.		Flow - USgpm			
Flow (USgpm)	Head (ft)	Pump Efficiency (%)	Power Required (hp)	NPSH Required (ft)	
0.0 289.7 405.2	93.42 93.31 91.77	0 0 64.5 72.9	5.30 10.58 12.88	4,61 6.08 7.77	
520 8 636.4 751.9 867.5	88.45 83.16 75.88 66.70	70.4 81.4 81.5 78.1 70.8	14.03 16.41 17.68 18.71 19.51	9.99 13.06 17.30 23.02	
983 1 1098.6	42.70	59.4	19.94	30.55	

Page 8 Rev. 2-87

Page 10 Rev. 2-87

HPBooks-GRAPH PAPER From Your COPIER

an Standation genetiktion part – v a 71

2 millimeters/Division-5th, 10th Accent

PUMP STATION TEST PRESSURE SHEET

	WESTERN HILLS	HYDRANT #A-398	MONTEREY HEIGHTS	WILSHIRE AVENUEA4
27-526	GLINO!	SEDENT FUNNI FREEDURE	PUTTE STATION PRESSURE	SALAL
5-Mari	(y)	05151	100 p- 51	0005/
12-14	4.9	40	-7-7	801
10_May	92	8 0 2 F	103	81
12-14GE . 25 Adams	~ 1	83	101	82
40~1 Mf	7.5	82-90	99	y T
<u>z-apr</u>	75	83	46-102	80-82
9-Apr	91	\$0.82	73-101	30
15-A01;	98	84	100	78-82
Zo-Apre	40	85	100,	80-85
50-4 <u>0</u> 81	94	80	98	79
7-1134	87	80	99	80
14-Meyj	84	75-79	98	30
2i-Maul	86	76	98	81
28-Mau	102	84	100	92
4-៤មក	GH	82	99	80
11-Juni	94	82-84	99	80
18-Jun	92	80	100	76
25-Jun	94	82	48	78
2-Juii	94	1 <u> </u>	99	80
9101	94	80	99	49
16-Jul	57.12	\$10	100	80
23htt	91	 <> <i>E</i> 	99	90
50-1011		78	40	80
6-240	1.Q 7.1	20		0 <u>0</u>
7 Augi	22	81	-11	77
io nugi Xii Auni	72	8.1	- MC	k l
		8.1	70	10
7 8.1	7.4	8.4		80 N0
0.065	7.8	80	7.7	28,
0-380:	94	78	100	7.6
/-360	92	80	27	76
4-5-0	92	80	79	7.1
1-Liet:	94	78	99	7.8
8-00t;	76	81-84	99	80
15-0ct	100	76	99	76
22-0cl	101	80	98-101	80
29-0eti	94	8.3	100	80
5-Nov:	98	82	99	55
2-Nov	78	75	100	77
9-Nov	100	80	'99	82
6-Nov:	100	80	99	78
3-Daci	102	82	IDD	75-85
0-Deci		annananan anna∎an7an annananan an ta		
7-Deci				
4-Dec	1	·		
·····				

· · · · · · · · · ·

•

)))))))) e e

Performance Curves – 60 Hz, 3500 RPM Curvas de desempeño – 60 Hz, 3500 RPM Model 11AI/BF / Size (Tamaño) 2½ x 3-

	H	G	Ţ	ш	D	0	в	A	Ordering Code Código de pedido	Optional Impel Impulsor optat
74	75/	8	81/	85/6	9	9/56	91/8	101/1	Dia. Diá.	ler

NOTE: Pump will pass a sphere to 5/16" diameter.

NOTA: La bomba dejará pasar una esfera de hasta ^s/_{le} de pulgada de diámetro.

P-1 + p-2

NOTA: La bo	NOTE: Pum to ¾" diame	-	~	_	H	G	-	m	D	0	8	A	Impeller Code, Código del Impulsor	Optio Impul
nppa b	p will p ter.	51/2	б	61/2	67/8	71/8	71/2	711/16	81/16	87/16	811/16	91/16"	Dia., Diá.	nal In sor O
asará una	oass a sphere	15	20	25	30	40	40	50	50	60	75	75	Standard HP Rating, Estándar HP Potencia	npeller, pcional

esfera a 3/4" diámetro.

Performance Curves – 60 Hz, 3500 RPM

.

1

ENGINE		GORMAN-RUPP
	Johe Point 115	PUMPS
		ENGINEERED SYSTEMS Mansfield, Ohio 44902
Date:	03/26/03	
Revisions:		
erial No.:	03-6323	
	SUPPLEMENT SHEET	
	Pump Data	
	Pump No. 1 Serial No.:	1258682
	Pump No. 2 Serial No.:	1258683
	Pump No. 3 Serial No.:	NONE
	Engine Data	
	Engine Serial No. (When Applicable)	NONE
	Motor Data	
	R. P. M. Full Load:	1765
	Full Load Amps:	37.4
	Service Factor:	<u>1.15</u> Ν/Δ
	Full Load Amp Setting:	37.4
	Pump Motor No. 1 Serial No.:	BE95284
	Pump Motor No. 2 Serial No.:	BE95285
	Pump Motor No. 3 Serial No.	NONE
	Pump Motor No. 4 Serial No.:	NONE
	Pg. 1 of 1	

JS SERIES PUMPS

PL-04103

PERFORMANCE CURVE - MODEL JS4J60-X27 ALL VOLTAGES

APPROVED

Pump speed and operating condition points must be within the continuous performance range shown on the curve.

NOTE

The curve shows 460 volt performance only. For 200 or 230 volt performance, multiply amperage shown by 2.3 or 2, respectively.

PUMP MAINTENANCE AND REPAIR - SECTION E

MAINTENANCE AND REPAIR OF THE WEARING PARTS OF THE PUMP WILL MAINTAIN PEAK OPER-ATING PERFORMANCE.

* STANDARD PERFORMANCE FOR PUMP MODEL T3A3S-B

*Based on 70°F (21°C) clear water at sea level with minimum suction lift. Since pump installations are seldom identical, your performance may be different due to such factors as viscosity, specific gravity, elevation, temperature, and impeller trim.

If your pump serial number is followed by an "N", your pump is **NOT** a standard production model.

Contact the Gorman-Rupp Company to verify performance or part numbers.

Pump speed and operating condition points must be within the continuous performance range shown on the curve.

3500 RPM AD-FEE IMPELLER U.S. GALLONS PER MINUTE CURVE SERIAL NO. 208 (90PSI) 3 PUMP MODEL NOC-830 AM RPM 3460 _ GPM_ 1800_ TOTAL HD FEET_ BY____H.B.N CERT. FOR C APPROVAL CONSTRUCTION DATE 9/20/85 PAGE 10 REV. 7-83 The old point gave us 530 GPM @ 160' using a 30 H.P MOTOR By changing out the impeller from a 7.00" to 8.00" Diamater and the motor To a 40 H.P. we will have 208' (90PSI) and increase our flow to 600+GPM Therefore: No Piping CHANGE No Control Center Change (only Heaters) The new Hydro Constant will have the same oump and motor but will need a base modification,

PRV Stations--Settings and Sequences (December 2012)

Sequence*	Size (in)	Elevation (ft)	Pressure (psi)	HGL (ft) 6207	
8	10	5978	99		
12	24	5978	93	6193	

Cleveland Vault

*Note: Sequence listed is for the Sun Valley/East Lakeview Zone

Dell Range Zone

Zone Sequence	Station Name	Elevation (ft)	Pressure (psi)	HGL (ft
1	Converse South-4"	6095	75	6268
2	Pershing-4"	6016.5	108	6266
3	Converse North-4"	6095.5	72	6262
4	Airport Parkway-4"	6088.3	73	6257
5	Converse South-12"	6095	65	6245
6	Pershing-12"	6016.5	98	6243
7	Converse North-12"	6095.5	62	6239
8	Airport Parkway-12"	6088.3	63	6234
9	Converse North-24"	6095.5	55	6223
10	Converse South-24"	6095	55	6222
11	Airport Parkway-24"	6088.3	55	6215

Sun Valley and East Lakeview Zone

Zone Sequence	Station Name	Elevation (ft)	Pressure (psi)	HGL (ft)	
1	Eastview-3"	5982	110	6236	
2	Henderson-3"	6009	95	6228	
3	Green River-3"	6002	96	6224	
4	Lumis-2"	6001	94	6218	
5	Ridge Road-3"	6010	89	6216	
6	Liberty-3"	6016	85	6212	
7	Henderson-8"	6009	88	6212	
8	Cleveland-10"	5978	99	6207	
9	Ridge Road-8"	6010	84	6204	
10	El Camino-3"	6028	75	6201	
11	Transfer Sta-8"	5977	96	6199	
12	Cleveland-24"	5978	5978 93		
13	Eastview-8"	5982 90		6190	
14	Lumis-4"	6001	80	6186	
15	Green River-8"	6002 76		6178	
16	Liberty-8"	6016	6016 65		
17	El Camino-8"	6028	55	6155	

SITE # 60

9:12:55 AM

5/14/2013 Powderhouse Booster Pump Station

Pump #3

24:16:43:04

Pump #4

70:14:54:49

Pump #2

22:12:04:45

Pump #1

28:07:05:12

Discharge Flow 133 GPM Flow Total 620585 x1,000

Discharge Pressure 107 PSISet point = 110 PSC

Close Screen

NX SuperE 25HP (1725) 1040A w stices 5 1 YOHP YONOTOR (3500) REPRESS ? 830A YOHP 215 HOTOR (3. DO) 8304 HP Baldon 830A HOHP 21SMOTOR C830A N 5 WOAP 215 MOTOR (3520KM) 530A V/H-50HA 215) (3550) EI C830A HOHPBALAR (3500) C 830A C \$30A VOITP BUR (35P) 1040 ? 11.5K ん 301HP GEC (1175) Dur EI 75HP EBUSIN 3565 65640/140A 2 75HP Emerson 3565 C1140 A 3 754 PEmarson 3563 CILLOA W 4 25 HP Emuson (3565) 82.5A NRBPOIDOHP Buldon (3540) \$ 100 3 100 250 (3530) 1050 (3530)

Appendices

Appendix 5-B Model Demand Allocation Process Additional Information

• Workflow for assigning existing and future demands to the hydraulic model (referenced spreadsheet in workflow was sent with final electronic model and supporting files deliverable)

Introduction:

The following are a series of steps for the allocation of water meter consumption data from an access database spatially assigned to the closed junction in the City's Infowater hydraulic model. The steps are intended to be followed using the spreadsheet "Meter Data Master Import Template.xltx" Sub items below each step describe specific actions in Microsoft Access, Excel, and ARCMap.

STEP 1: Export Data from the Access Database into this Workbook

Copy and paste data from Access Database; Filter records in Access first.

- a. Filter the UTLCID column for values I, W, and WC (or whatever criteria are desired) found under the "Service" column.
- b. Filter the UTBILY column for the desired year(s).
- c. Copy and paste data into cell A1 in tab "A. Access Database"

Note: Data may need to be copied in sections of 65,000 rows at a time. Attempting to copy all data at once may result in an error (max is 65,000)

STEP 2: Create a Compiled List of Unique Meter Records

To create a compiled list of unique records, follow these steps:

- 1. Select the column titles above rows or records that you want to sort.
- 2. On the Data menu, point to Filter, and then click Advanced Filter. If you are prompted as follows, click OK.
- 3. Under Action, click Copy to another location.
- 4. In the List range box, type or select the range of records for the entire column "UTLCID". \$B\$1:\$B\$269112 is used in this table. Depending on the number of records copied from Access, the range will increase or decrease (e.g. \$B\$1:\$B\$65535 or \$B\$1:\$B\$100000). This applies to many following steps; the end of the range could be any value depending on the length of the data set.
- 5. In the Criteria range box, type or select the same range of records, the entire column "UTLCID".
- 6. In the Copy to box, select cell L1.
- 7. Click to select the "Unique records only" check box.
- 8. Click OK.

Note: The Filter may take several minutes to process. If the first record of original data is duplicated, it appears twice in the new list. Just delete the first line.

STEP 3: Sum Total Meter Consumption Data Values for each Unique Meter Record

1. Use a SUMIF formula to sum the "Gallons" values for each unique UTLCID Record. The formula is described below.

=SUMIF(range, criteria, [sum_range])

The following SUMIF formula was used in this table. =SUMIF(\$B\$2:\$B\$#######,L2,\$E\$2:\$E\$######)

2. Then copy the formula below for each record. The formulas should proceed as: M2: =SUMIF(\$B\$2:\$B\$#####,L2,\$E\$2:\$E\$######) M3: =SUMIF(\$B\$2:\$B\$######,L3,\$E\$2:\$E\$######) M4: =SUMIF(\$B\$2:\$B\$######,L4,\$E\$2:\$E\$######) M5: =SUMIF(\$B\$2:\$B\$######,L5,\$E\$2:\$E\$######) etc.....

Note: The SUMIF formula will take a few minutes to process for every record. Once finished, the results should be copied and pasted in place as values; otherwise, keeping all the values in place will take a lot of memory in the spreadsheet.

STEP 4: Convert Meter Consumption Data Values to Gallons per Minute (STEP 5 in tab B.GIS Database)

Convert the "Gallons" values to gallons per minute (gpm). Column M includes the values 1,000 gallons per year. To convert to gallons per minute follow the steps below.

- 1. Multiply by 1,000 to convert from 1,000 gallons per year to gallons per year.
- 2. Divide by 365 days per year (366 for leap years)
- 3. Divide by 24 hours per day
- 4. Divide by 60 minutes per hour.

This can be included in a single formula. 2012 is a leap year, so the factor 366 is used in the formula below.

=M2*1000/366/24/60

STEP 5: Import GIS Meter Database to Excel

Copy all records from the GIS Meter Database file. Open the attribute table in ArcGIS and copy and paste records into this document. This step is used to verify the records in the Access Database have a corresponding match in the GIS database before creating a join in ArcGIS.

Note: May need to copy in sections of 5000 rows at a time as all data might be too large to copy. Select range and right click to copy selection.

STEP 6: Check for Meter Record Match in the GIS Meter Database

Verify that there is a corresponding match in the GIS database. Copy and paste all data records in the attribute table in ArcGIS into the tab "B.GIS Database." The GIS Data at the time of this study is MeterLocations.shp.

The VLOOKUP and ISNUMBER formulas are used to report if there is a match between each meter record in the Access Database and the meter records in the GIS Database.

The formula is created as follows: =ISNUMBER(VLOOKUP(L2,'B.GIS Database'!\$E\$2:\$E\$23298,1,FALSE))

1. The VLOOKUP function is defined as follows.

VLOOKUP(lookup_value, table_array, col_index_num, [range_lookup])

lookup_value Required

The value to search in the first column of the table or range. The lookup_value argument can be a value or a reference. If the value you supply for the lookup_value argument is not found in the first column of the table_array argument, VLOOKUP returns the #N/A error value. This is referencing the meter records in UTLCID in Column L. It will tell the VLOOKUP function to look for this value in the GIS database. When a record is not found, the #N/A error value is returned. This record does not have a match in the GIS database.

table_array Required

The range of cells that contains the data. The values in the first column of table_array are the values searched by lookup_value. These values can be text, numbers, or logical values. Uppercase and lowercase texts are equivalent. This is referencing the values in the GIS Database for the column "location_i."

col_index_num Required

The column number in the table_array argument from which the matching value must be returned. A col_index_num argument of 1 returns the value in the first column in table_array; a col_index_num of 2 returns the value in the second column in table_array, and so on. In this formula, a col_index_num of 1 is used to return the matched meter record in the GIS Database.

If the col_index_num argument is:

- Less than 1, VLOOKUP returns the #VALUE! error value
- Greater than the number of columns in table_array, VLOOKUP returns the #REF! error value

range_lookup Optional

A logical value that specifies whether you want VLOOKUP to find an exact match or an approximate match:

If range_lookup is either TRUE or is omitted, an exact or approximate match is returned. If an exact match is not found, the next largest value that is less than lookup_value is returned.

Important: If range_lookup is either TRUE or is omitted, the values in the first column of table_array must be placed in ascending sort order; otherwise, VLOOKUP might not return the correct value.

2. The ISNUMBER formula is used to return a value of TRUE of FALSE. If the VLOOKUP function returns a value, the formula will return TRUE. These are where the meter records match. If the VLOOKUP formula returns a #N/A error value indicating there is no match for the meter record, the ISNUMBER formula will return a FALSE.

STEP 7: Check for Multiple Meter Records in the GIS Meter Database

A COUNTIF formula is used to count how many meter records are in the GIS Database for each unique meter record in the UTLCID column L.

The formula is defined as follows: COUNTIF(range, criteria) **range** = the column that will be searched for multiple records. In this case, the column "location_i" in the GIS Database will be set at the range. **criteria** = the is to select the unique meter record in Column L "UTLCID"

The formula as input in this spreadsheet is: =COUNTIF('B.GIS Database'!\$E\$2:\$E\$23298,'A.Access Database'!L2)

STEP 8: Adjust Demand Values for Meters with Multiple Records in the GIS Meter Database

(STEP 9 in Tab C.Table for Spatial Join)

When there are multiple records in the GIS Database for a unique meter ID, the total demand is divided by the number of records. This represents the average day demand per meter. When a join is performed in ArcGIS, the adjusted values for meters with multiple records will be applied so the sum of is equal to the total demand for a unique record.

To accomplish this, the values in Column N are divided by the values in Column P. Because there are some meters that have no corresponding match in the GIS Database, the formula used in Column P returns a zero. As you cannot divided number by zero, an IF formula is used. See below.

IF(logical_test,value_if_true,value_if_false)

logical test = value in Column O. This provides the "TRUE" or "FALSE" aspect of the formula. **value_if_true** = the formula for value in Column N divided by value in Column P. **value_if_false** = this should be a value 0. If there is no match, there is no demand that can be matched.

An example for the first line: =IF(O2,N2/P2,0)

STEP 9: Paste Columns with Unique Meter Records and Adjusted Consumption Values for to Create a Join Table for ArcGIS

(STEP 10 and 11 are performed in ArcGIS, STEP 12 is in tab D.Spatial Join Meter DB) Copy and Paste the "UTLCID" and "Adjusted Average Day Demand (gpm)" columns from the tab "A.Access Database." The columns are L and Q in this table.

- 1. Paste Special only the values into this table.
- 2. Change the heading on each column to be compatible with GIS. Only 10 characters and no spaces or special characters.
- 3. This table can be copied in to another excel file solely for the purpose of joining it to the GIS Database in ArcGIS.

STEP 10: Create Join in ArcGIS between the GIS Meter Database and the Table Prepared in Step 9

- a. Right click on GIS Meter Database, select Joins and Relates, then select Join...
- b. In the Join Data dialog box make the following selections
 - 1. "location_i" is the field in the GIS Meter Database selected for the join to be based on
 - 2. "2012 ADD" is the table that was created from STEP 9 to join to the GIS Meter Database (can be any file name that contains the data from STEP 9)
 - 3. UTLCID is the field in the excel table that the join will be based on.
 - 4. Join option Keep All Records is selected

STEP 11: Perform a Spatial Join between the GIS Meter Database and Model Junctions

- a. Open up the Spatial Join dialog box from the ArcToolbox. In the Spatial Join Tool, make the following selections:
 - 1. Set the Target Features to the GIS Meter Database
 - 2. Set the Join Features to the Model Junctions
 - 3. Save the resulting file
 - 4. The Join Operation should be ONE_TO_ONE
 - 5. The Match Option should be set to "Closest"
 - 6. Click OK to create the spatial join

STEP 12: Import Spatial Join Shapefile Attribute Table to Excel (STEP 13 in tab E.DB Model Junction)

After performing a spatial join between the model demand junctions and the GIS Database joined to the Access Demand values, paste the values from the Attribute Table in ArcGIS into this table.

This spatially joined GIS shapefile will contain a link between each meter in the GIS database and the closest Model Junction.

STEP 13: Copy Model Junction ID from Infowater and Paste in Excel

Copy all Model Junction IDs from the DB Editor. This table will be used to sum all the demands to each model junction location.

- 1. Open the DB Editor
- 2. Select Junction Demand (Modeling) Data, Select Entire Table for Data Scope, and uncheck Edit Active Elements Only box, Click OK
- 3. Select the ID (Char) column and paste into excel

STEP 14: Sum Meter Consumption Data Values for each Model Junction

Sum the total demand for each Model Junction

Use SUMIF formula to sum all demand values for each Model Junction. The range is the Column titled "MOID" in the spatially joined GIS shapefile. The criteria is the value in the ID (Char) in Column A in this tab. The [sum_range] is the Demand Values in the spatially joined GIS shapefile.

The formula in this spreadsheet is below: =SUMIF('D.Spatial Join Meter DB'!\$AH\$2:\$AH\$23298,'E.DB Model Junction'!A2,'D.Spatial Join Meter DB'!\$AF\$2:\$AF\$23298)

STEP 15: Adjust Model Demands Globally to Account for Meters Records that Could Not be Joined to the GIS Meter Database

Formulas: IF, SUM, COUNTIF

- 1. Use IF formula to only apply global adjustment to Model Nodes where demand does not equal zero
- 2. The compound formula that calculates a global adjustment if the Model Demand is greater than zero is described as follows. The total demand in Column B subtracted from the total demand from the Access Database (column N in tab A.Access Database) is the difference between the demand values from STEP 4 and the demand values from STEP 14. The resulting difference is divided by the total number of Model Junctions with demand greater than zero (COUNTIF formula used). The resulting value is then added to each demand value determined in STEP 14. The sum of all adjusted demand should equal the sum of the demands in STEP 4.

Excel Formula used: =IF(B2=0,0,B2+(SUM('A.Access Database'!\$N\$2:\$N\$#####)-SUM(\$B\$2:\$B\$######))/COUNTIF(\$B\$2:\$B\$#####,">0"))

Appendices

Appendix 5-C Future Developable Land Buildout Figures

- Figure C-1 2023 Future Developable Land Map
- Figure C-2 2033 Future Developable Land Map
- Figure C-3 2063 Future Developable Land Map

Legend

Percent Buildout (%) 0 <20 20 - 40 40 - 60

60 - 80

80 - 100

Figure C-1 2023 Developable Land Map

Volume 5 – Potable Water Storage and Distribution 2013 Water and Wastewater Master Plans

Legend

Percent Buildout (%) 0 <20 20 - 40 40 - 60 60 - 80

80 - 100

Figure C-2 2033 Developable Land Map

Volume 5 – Potable Water Storage and Distribution 2013 Water and Wastewater Master Plans

Legend

Percent Buildout (%) 0 20
20 - 40
40 - 60
60 - 80

80 - 100

Figure C-3 2063 Developable Land Map

Volume 5 – Potable Water Storage and Distribution 2013 Water and Wastewater Master Plans

Appendices

Appendix 5-D Existing Fire Hydrant Model Results Table

		2013		2023		2033		2063		
ID	Fire Flow Goal (gpm)	Available Fire Flow (gpm)	% of Fire Flow Goal							
2013 Available Fire Flow <25% of Fire Flow Goal										
047FH052	1,500	-536	-36%	1,329	89%	1,215	81%	959	64%	
048FH142	1,500	-128	-9%	1,213	81%	1,121	75%	910	61%	
061FH068	3,000	738	25%	936	31%	914	30%	867	29%	
061FH072	3,000	612	20%	777	26%	758	25%	720	24%	
061FH078	3,000	606	20%	434	14%	428	14%	419	14%	
062FH102	4,000	903	23%	819	20%	804	20%	776	19%	
062FH106	4,000	999	25%	977	24%	959	24%	922	23%	
075FH003	3,000	717	24%	521	17%	516	17%	509	17%	
075FH005	3,000	661	22%	488	16%	483	16%	478	16%	
075FH012	3,000	668	22%	502	17%	499	17%	495	16%	
075FH014	3,000	686	23%	515	17%	511	17%	507	17%	
075FH017	3,000	560	19%	420	14%	417	14%	413	14%	
077FH053	4,000	677	17%	597	15%	589	15%	583	15%	
077FH061	4,000	837	21%	752	19%	743	19%	736	18%	
078FH002	4,000	215	5%	213	5%	213	5%	211	5%	
078FH004	3,000	363	12%	360	12%	359	12%	356	12%	
089FH034	1,500	353	24%	294	20%	294	20%	293	20%	
089FH037	3,500	286	8%	237	7%	237	7%	236	7%	
089FH089	3,500	656	19%	538	15%	671	19%	669	19%	
089FH090	3,500	622	18%	512	15%	620	18%	618	18%	
089FH091	3,500	855	24%	707	20%	898	26%	896	26%	
089FH092	3,500	737	21%	604	17%	1,185	34%	1,180	34%	
089FH093	3,500	752	21%	617	18%	1,265	36%	1,260	36%	
090FH073	3,500	871	25%	765	22%	762	22%	759	22%	
090FH087	3,500	715	20%	623	18%	626	18%	624	18%	
090FH095	3,500	721	21%	628	18%	630	18%	628	18%	
090FH100	3,500	739	21%	649	19%	646	18%	644	18%	
090FH103	3,500	638	18%	3,956	100%	3,925	100%	3,902	100%	
090FH105	3,500	442	13%	385	11%	384	11%	382	11%	
091FH005	3,000	684	23%	595	20%	586	20%	579	19%	
091FH045	3,000	695	23%	629	21%	622	21%	616	21%	
091FH046	3,000	682	23%	637	21%	628	21%	621	21%	
091FH054	3,000	628	21%	576	19%	567	19%	560	19%	
091FH087	3,000	738	25%	692	23%	682	23%	676	23%	
091FH093	3,500	531	15%	492	14%	485	14%	481	14%	
092FH060	3,000	602	20%	571	19%	561	19%	554	18%	
103FH012	3,500	483	14%	435	12%	432	12%	430	12%	

Fire Hydrant Model Results for Available Fire Flow for Year 2013, 2023, 2033, and 2063 Scenarios

104FH038	2,500	562	22%	578	23%	569	23%	562	22%		
105FH002	3,500	782	22%	826	24%	810	23%	800	23%		
105FH050	3,500	437	12%	453	13%	445	13%	440	13%		
105FH051	3,500	513	15%	534	15%	524	15%	518	15%		
106FH005	3,500	569	16%	579	17%	569	16%	563	16%		
107FH040	3,500	842	24%	1,043	30%	1,043	30%	1,042	30%		
107FH041	3,500	854	24%	1,064	30%	1,064	30%	1,062	30%		
117FH008	3,500	655	19%	800	23%	704	20%	656	19%		
156FH006	3,500	802	23%	1,284	37%	1,187	34%	1,051	30%		
156FH007	3,500	757	22%	1,109	32%	1,033	30%	931	27%		
157FH020	3,500	826	24%	972	28%	941	27%	867	25%		
2013 Available Fire Flow 25 - 50% of Fire Flow Goal											
048FH152	3,000	1,381	46%	1,420	47%	1,394	46%	1,306	44%		
049FH022	3,000	1,371	46%	1,395	47%	1,369	46%	1,298	43%		
049FH034	3,000	1,356	45%	1,362	45%	1,338	45%	1,288	43%		
061FH005	3,000	1,356	45%	1,624	54%	1,596	53%	1,539	51%		
061FH026	3,000	1,406	47%	1,776	59%	1,729	58%	1,633	54%		
061FH027	3,000	1,125	38%	1,295	43%	1,276	43%	1,237	41%		
061FH036	3,000	887	30%	1,035	34%	1,019	34%	987	33%		
061FH037	3,000	1,168	39%	1,496	50%	1,456	49%	1,373	46%		
061FH054	3,000	1,415	47%	1,788	60%	1,741	58%	1,644	55%		
061FH057	3,500	1,267	36%	1,376	39%	1,354	39%	1,310	37%		
061FH060	3,000	1,048	35%	1,378	46%	1,339	45%	1,256	42%		
061FH065	3,000	1,295	43%	1,676	56%	1,629	54%	1,530	51%		
061FH091	3,500	1,452	41%	1,543	44%	1,523	44%	1,483	42%		
062FH017	3,000	1,403	47%	1,630	54%	1,602	53%	1,543	51%		
062FH098	3,000	1,242	41%	1,102	37%	1,084	36%	1,052	35%		
062FH103	4,000	1,261	32%	1,254	31%	1,230	31%	1,192	30%		
062FH105	4,000	1,694	42%	1,644	41%	1,615	40%	1,560	39%		
062FH128	4,000	1,484	37%	1,553	39%	1,530	38%	1,482	37%		
062FH169	4,000	1,574	39%	1,464	37%	1,436	36%	1,381	35%		
064FH072	2,500	913	37%	909	36%	908	36%	904	36%		
065FH038	1,500	521	35%	786	52%	947	63%	607	40%		
065FH039	1,500	514	34%	734	49%	831	55%	577	38%		
065FH040	1,500	553	37%	794	53%	942	63%	638	43%		
065FH041	1,500	532	35%	760	51%	877	58%	604	40%		
065FH044	1,500	568	38%	773	52%	882	59%	639	43%		
065FH045	1,500	514	34%	742	49%	849	57%	581	39%		
065FH108	3,000	1,278	43%	1,554	52%	1,886	63%	1,421	47%		
075FH004	3,000	772	26%	573	19%	568	19%	562	19%		
075FH006	3,000	824	27%	618	21%	614	20%	607	20%		
075FH007	3,000	1,275	42%	957	32%	949	32%	939	31%		
075FH008	3,000	1,359	45%	1,034	34%	1,025	34%	1,016	34%		
075FH010	3,000	1,464	49%	1,097	37%	1,089	36%	1,079	36%		

075FH011	3,000	1,049	35%	783	26%	777	26%	770	26%
075FH024	1,500	662	44%	513	34%	510	34%	507	34%
075FH033	3,000	1,247	42%	966	32%	961	32%	955	32%
075FH037	3,000	1,086	36%	858	29%	855	29%	852	28%
075FH048	3,000	1,064	35%	857	29%	850	28%	840	28%
075FH049	3,000	1,145	38%	923	31%	916	31%	905	30%
076FH011	4,000	1,821	46%	2,491	62%	2,419	60%	2,267	57%
076FH013	4,000	1,727	43%	2,378	59%	2,307	58%	2,158	54%
076FH017	4,000	1,501	38%	2,024	51%	1,967	49%	1,844	46%
076FH018	4,000	1,539	38%	2,081	52%	2,022	51%	1,895	47%
076FH021	3,000	897	30%	701	23%	697	23%	693	23%
076FH026	3,000	902	30%	706	24%	700	23%	695	23%
076FH051	4,000	1,875	47%	1,714	43%	1,683	42%	1,657	41%
077FH060	3,000	1,414	47%	1,271	42%	1,246	42%	1,227	41%
078FH001	3,000	1,159	39%	1,149	38%	1,148	38%	1,140	38%
078FH012	3,000	901	30%	1,029	34%	1,013	34%	979	33%
089FH013	3,000	837	28%	668	22%	670	22%	669	22%
089FH026	1,500	733	49%	605	40%	605	40%	603	40%
089FH029	1,500	736	49%	612	41%	612	41%	611	41%
089FH035	3,500	1,271	36%	1,059	30%	1,104	32%	1,101	31%
089FH036	3,500	941	27%	810	23%	1,223	35%	1,219	35%
089FH040	3,500	1,094	31%	956	27%	1,583	45%	1,577	45%
089FH041	3,500	1,213	35%	1,148	33%	1,144	33%	1,141	33%
089FH044	3,500	1,180	34%	1,043	30%	1,672	48%	1,666	48%
089FH045	3,500	1,214	35%	1,065	30%	1,342	38%	1,336	38%
089FH047	3,500	1,427	41%	1,256	36%	1,781	51%	1,773	51%
089FH048	3,500	1,380	39%	1,225	35%	1,789	51%	1,782	51%
089FH049	3,500	1,339	38%	1,189	34%	1,785	51%	1,778	51%
089FH050	3,500	1,308	37%	1,162	33%	1,727	49%	1,721	49%
089FH052	3,500	1,476	42%	1,300	37%	1,443	41%	1,437	41%
089FH056	3,500	1,708	49%	2,082	59%	1,986	57%	1,849	53%
089FH058	3,500	970	28%	837	24%	1,306	37%	1,301	37%
090FH025	2,500	1,023	41%	859	34%	857	34%	854	34%
090FH027	3,000	1,196	40%	1,044	35%	1,038	35%	1,033	34%
090FH043	2,500	859	34%	725	29%	719	29%	714	29%
090FH047	3,500	889	25%	756	22%	750	21%	746	21%
090FH066	2,500	956	38%	830	33%	827	33%	823	33%
090FH075	3,500	1,466	42%	2,269	65%	2,261	65%	2,253	64%
090FH086	3,500	957	27%	845	24%	842	24%	839	24%
090FH090	3,500	1,085	31%	967	28%	963	28%	958	27%
090FH092	3,500	1,119	32%	990	28%	988	28%	983	28%
090FH097	3,500	1,338	38%	1,193	34%	1,188	34%	1,182	34%
090FH107	3,500	1,339	38%	1,206	34%	1,199	34%	1,193	34%
090FH114	2,500	942	38%	2,584	100%	2,562	100%	2,545	100%

090FH118	3,500	1,064	30%	5,259	100%	5,207	100%	5,166	100%
091FH014	2,500	871	35%	4,206	100%	4,156	100%	4,115	100%
091FH024	2,500	717	29%	639	26%	630	25%	624	25%
091FH027	3,000	1,032	34%	989	33%	978	33%	970	32%
091FH029	2,500	776	31%	774	31%	765	31%	759	30%
091FH032	1,500	749	50%	683	46%	676	45%	671	45%
091FH036	2,500	841	34%	745	30%	735	29%	727	29%
091FH037	2,500	1,019	41%	2,103	84%	2,069	83%	2,041	82%
091FH041	1,500	599	40%	528	35%	521	35%	515	34%
091FH043	1,500	494	33%	438	29%	431	29%	427	28%
091FH044	1,500	630	42%	568	38%	559	37%	553	37%
091FH047	1,500	584	39%	534	36%	526	35%	520	35%
091FH049	1,500	602	40%	549	37%	540	36%	533	36%
091FH050	1,500	701	47%	650	43%	641	43%	634	42%
091FH053	3,000	869	29%	821	27%	810	27%	801	27%
091FH055	3,000	1,334	44%	1,294	43%	1,273	42%	1,257	42%
091FH067	3,000	1,146	38%	1,034	34%	1,026	34%	1,019	34%
091FH080	3,500	1,161	33%	1,055	30%	1,047	30%	1,041	30%
091FH091	3,000	824	27%	816	27%	804	27%	796	27%
091FH095	3,000	958	32%	981	33%	966	32%	956	32%
091FH104	3,000	1,075	36%	1,350	45%	1,330	44%	1,316	44%
092FH011	3,500	1,599	46%	1,537	44%	1,519	43%	1,505	43%
092FH042	3,000	881	29%	830	28%	822	27%	816	27%
092FH054	3,000	1,325	44%	1,283	43%	1,273	42%	1,265	42%
092FH066	1,500	718	48%	697	46%	686	46%	679	45%
092FH071	3,000	1,467	49%	1,472	49%	1,452	48%	1,436	48%
093FH054	3,000	1,342	45%	1,334	44%	1,330	44%	1,327	44%
102FH007	3,000	949	32%	852	28%	840	28%	824	27%
103FH045	3,500	1,539	44%	1,471	42%	1,453	42%	1,444	41%
103FH081	3,500	1,161	33%	1,055	30%	3,324	95%	3,201	91%
103FH146	3,500	1,021	29%	919	26%	942	27%	926	26%
104FH001	3,500	1,211	35%	1,102	31%	1,097	31%	1,092	31%
104FH010	3,000	1,440	48%	1,324	44%	1,316	44%	1,310	44%
104FH025	2,500	632	25%	624	25%	615	25%	610	24%
104FH029	2,500	941	38%	958	38%	942	38%	932	37%
104FH031	3,000	1,422	47%	1,395	47%	1,381	46%	1,373	46%
104FH037	3,000	1,196	40%	1,191	40%	1,177	39%	1,168	39%
104FH041	3,000	756	25%	737	25%	728	24%	722	24%
104FH060	1,500	667	44%	658	44%	646	43%	639	43%
105FH018	3,500	1,056	30%	1,101	31%	1,080	31%	1,067	30%
105FH023	3,000	855	29%	898	30%	882	29%	872	29%
105FH031	3,500	1,044	30%	1,566	45%	1,531	44%	1,510	43%
105FH035	3,500	1,136	32%	2,191	63%	2,141	61%	2,111	60%
105FH048	3,500	1,138	33%	1,228	35%	1,203	34%	1,189	34%

105FH053	3,500	1,119	32%	1,215	35%	1,184	34%	1,168	33%
105FH060	2,500	668	27%	689	28%	678	27%	670	27%
105FH070	3,000	1,485	49%	1,687	56%	1,641	55%	1,605	54%
105FH072	3,500	953	27%	1,024	29%	999	29%	986	28%
105FH082	3,500	1,660	47%	1,925	55%	1,851	53%	1,798	51%
105FH093	2,500	1,238	50%	1,429	57%	1,368	55%	1,325	53%
107FH018	3,500	1,152	33%	4,168	100%	4,169	100%	4,161	100%
107FH019	3,500	1,222	35%	3,564	100%	3,564	100%	3,557	100%
107FH020	3,500	928	27%	3,649	100%	3,649	100%	3,643	100%
107FH022	3,500	1,275	36%	3,178	91%	3,178	91%	3,172	91%
107FH023	3,500	1,337	38%	3,028	87%	3,028	87%	3,022	86%
107FH024	3,500	1,719	49%	3,046	87%	3,047	87%	3,041	87%
107FH025	3,500	1,602	46%	2,992	85%	2,992	85%	2,986	85%
107FH026	3,500	1,447	41%	2,997	86%	2,997	86%	2,991	85%
107FH034	3,500	1,537	44%	2,808	80%	2,808	80%	2,803	80%
107FH035	3,500	1,533	44%	2,789	80%	2,789	80%	2,784	80%
107FH036	3,500	1,521	43%	2,758	79%	2,758	79%	2,753	79%
107FH037	3,500	1,518	43%	2,858	82%	2,859	82%	2,853	82%
107FH038	3,500	1,496	43%	2,675	76%	2,675	76%	2,670	76%
107FH039	3,500	1,481	42%	2,558	73%	2,558	73%	2,553	73%
107FH042	3,500	1,139	33%	1,748	50%	1,747	50%	1,745	50%
107FH043	3,500	1,181	34%	1,856	53%	1,856	53%	1,853	53%
107FH044	3,000	988	33%	4,964	100%	4,965	100%	4,955	100%
107FH045	3,000	963	32%	4,145	100%	4,145	100%	4,137	100%
107FH046	3,000	897	30%	3,838	100%	3,838	100%	3,834	100%
117FH011	3,500	1,612	46%	1,464	42%	1,631	47%	1,595	46%
118FH003	3,000	1,081	36%	1,355	45%	1,204	40%	1,166	39%
144FH001	3,500	1,271	36%	4,879	100%	4,711	100%	4,376	100%
144FH002	3,500	1,450	41%	5,486	100%	5,320	100%	4,972	100%
144FH003	3,500	1,605	46%	6,171	100%	6,001	100%	5,642	100%
156FH002	3,500	1,281	37%	2,116	60%	2,022	58%	1,827	52%
156FH003	3,500	887	25%	1,838	53%	1,718	49%	1,423	41%
156FH004	3,500	1,134	32%	2,059	59%	1,936	55%	1,680	48%
156FH005	3,500	954	27%	1,817	52%	1,693	48%	1,397	40%
156FH008	3,500	916	26%	1,319	38%	1,247	36%	1,130	32%
156FH009	3,500	977	28%	1,407	40%	1,339	38%	1,211	35%
157FH001	3,500	1,570	45%	2,592	74%	2,489	71%	2,223	64%
157FH002	3,500	1,720	49%	2,728	78%	2,632	75%	2,391	68%
157FH006	3,500	1,694	48%	2,451	70%	2,357	67%	2,160	62%
157FH017	3,500	1,308	37%	1,639	47%	1,589	45%	1,460	42%
157FH018	3,500	1,064	30%	1,291	37%	1,240	35%	1,117	32%
157FH019	3,500	896	26%	1,051	30%	1,007	29%	901	26%
170FH001	3,500	1,109	32%	1,966	56%	1,841	53%	1,577	45%
170FH002	3,500	1,354	39%	2,498	71%	2,342	67%	2,045	58%
170FH003	3,500	1,308	37%	2,180	62%	2,059	59%	1,813	52%
----------	-------	--------	------------	--------------	----------	-------------	------	-------	-----
170FH004	3,500	1,399	40%	2,294	66%	2,176	62%	1,938	55%
170FH005	3,500	1,458	42%	2,662	76%	2,506	72%	2,197	63%
170FH006	3,500	1,463	42%	2,397	68%	2,279	65%	2,032	58%
170FH007	3,500	1,312	37%	2,110	60%	2,008	57%	1,766	50%
170FH008	3,500	1,519	43%	2,525	72%	2,401	69%	2,132	61%
171FH001	3,500	1,698	49%	3,053	87%	2,910	83%	2,600	74%
171FH003	3,500	1,630	47%	2,871	82%	2,753	79%	2,444	70%
171FH004	3,500	1,653	47%	3,197	91%	3,048	87%	2,667	76%
171FH005	3,000	1,213	40%	1,518	51%	1,492	50%	1,381	46%
		2013 A	vailable F	Fire Flow 50	- 75% of	Fire Flow G	oal		
047FH084	3,000	2,014	67%	2,418	81%	2,373	79%	2,280	76%
047FH114	1,500	967	64%	1,577	100%	1,521	100%	1,402	93%
047FH124	3,000	2,201	73%	2,382	79%	2,364	79%	2,318	77%
048FH011	1,500	1,075	72%	1,040	69%	1,017	68%	969	65%
048FH047	3,000	2,190	73%	2,692	90%	2,629	88%	2,496	83%
048FH048	3,000	2,005	67%	2,453	82%	2,398	80%	2,282	76%
048FH050	3,000	2,077	69%	2,530	84%	2,473	82%	2,355	79%
048FH080	3,500	2,153	62%	2,669	76%	2,570	73%	2,361	67%
048FH139	1,500	787	52%	1,718	100%	1,624	100%	1,417	94%
048FH140	1,500	1,062	71%	1,707	100%	1,636	100%	1,481	99%
048FH150	3,000	2,173	72%	2,311	77%	2,311	77%	2,287	76%
049FH001	3,500	2,562	73%	2,996	86%	2,900	83%	2,696	77%
049FH025	2,500	1,559	62%	1,616	65%	1,571	63%	1,476	59%
049FH027	3,500	2,482	71%	2,907	83%	2,818	81%	2,628	75%
049FH028	3,500	2,356	67%	2,729	78%	2,651	76%	2,487	71%
049FH029	3,500	2,510	72%	2,897	83%	2,810	80%	2,627	75%
049FH030	3,500	2,165	62%	2,558	73%	2,482	71%	2,321	66%
049FH031	3,500	2,440	70%	2,873	82%	2,779	79%	2,580	74%
049FH032	3,500	2,285	65%	2,705	77%	2,619	75%	2,437	70%
049FH033	3,500	1,773	51%	2,230	64%	2,158	62%	2,004	57%
049FH035	3,000	1,522	51%	1,582	53%	1,536	51%	1,440	48%
049FH036	2,500	1,541	62%	1,606	64%	1,565	63%	1,480	59%
049FH037	3,000	1,508	50%	1,568	52%	1,522	51%	1,428	48%
061FH019	3,000	2,098	70%	2,401	80%	2,364	79%	2,287	76%
061FH020	3,000	2,182	73%	2,534	84%	2,487	83%	2,389	80%
061FH022	3,000	2,160	72%	2,470	82%	2,432	81%	2,353	78%
061FH025	3,000	1,868	62%	2,216	74%	2,170	72%	2,076	69%
061FH029	2,500	1,783	71%	2,087	83%	2,043	82%	1,952	78%
061FH030	3,000	1,685	56%	2,109	70%	2,054	68%	1,940	65%
061FH033	2,500	1,841	74%	2,135	85%	2,092	84%	2,003	80%
061FH035	2,500	1,347	54%	1,741	70%	1,692	68%	1,590	64%
061FH040	2,500	1,370	55%	1,762	70%	1,713	69%	1,611	64%
061FH041	3,500	2,082	59%	2,449	70%	2,391	68%	2,272	65%

061FH044	3,000	1,781	59%	2,170	72%	2,114	70%	1,997	67%
061FH045	3,000	1,738	58%	2,131	71%	2,075	69%	1,959	65%
061FH046	3,000	1,560	52%	1,976	66%	1,922	64%	1,809	60%
061FH053	3,000	1,729	58%	2,056	69%	2,014	67%	1,927	64%
061FH055	3,000	1,763	59%	1,912	64%	1,880	63%	1,818	61%
061FH058	3,000	1,870	62%	2,031	68%	1,997	67%	1,928	64%
061FH059	3,500	2,209	63%	2,391	68%	2,350	67%	2,269	65%
061FH061	3,500	1,792	51%	1,918	55%	1,890	54%	1,835	52%
061FH062	3,000	1,714	57%	1,485	50%	1,463	49%	1,427	48%
061FH082	3,000	1,860	62%	2,176	73%	2,135	71%	2,050	68%
061FH083	3,000	1,864	62%	2,180	73%	2,139	71%	2,054	68%
061FH088	3,000	1,678	56%	1,821	61%	1,791	60%	1,731	58%
061FH089	3,500	2,603	74%	2,518	72%	2,481	71%	2,414	69%
061FH092	3,500	2,363	68%	2,299	66%	2,268	65%	2,208	63%
061FH093	3,500	1,968	56%	1,981	57%	1,955	56%	1,905	54%
061FH094	3,500	2,398	69%	2,331	67%	2,300	66%	2,242	64%
061FH095	3,500	2,102	60%	1,994	57%	1,968	56%	1,916	55%
061FH096	3,000	1,736	58%	1,710	57%	1,688	56%	1,646	55%
061FH097	3,000	1,725	57%	1,713	57%	1,691	56%	1,648	55%
061FH098	3,000	1,878	63%	1,848	62%	1,824	61%	1,776	59%
061FH099	3,500	2,183	62%	2,142	61%	2,114	60%	2,059	59%
061FH100	3,000	1,970	66%	1,994	66%	1,967	66%	1,916	64%
061FH101	3,000	1,907	64%	1,808	60%	1,785	60%	1,740	58%
062FH005	3,000	2,238	75%	2,678	89%	2,622	87%	2,503	83%
062FH095	3,000	1,544	51%	1,674	56%	1,638	55%	1,563	52%
062FH100	3,500	1,755	50%	1,719	49%	1,693	48%	1,642	47%
062FH101	3,500	1,801	51%	1,766	50%	1,737	50%	1,681	48%
062FH107	4,000	2,605	65%	2,625	66%	2,578	64%	2,490	62%
062FH108	4,000	2,121	53%	2,053	51%	2,022	51%	1,967	49%
062FH109	4,000	2,460	61%	2,341	59%	2,304	58%	2,242	56%
062FH110	4,000	2,715	68%	2,616	65%	2,572	64%	2,498	62%
062FH111	4,000	2,675	67%	2,576	64%	2,534	63%	2,464	62%
062FH112	4,000	2,988	75%	2,914	73%	2,863	72%	2,776	69%
062FH113	4,000	2,829	71%	2,741	69%	2,695	67%	2,616	65%
062FH114	4,000	2,890	72%	2,807	70%	2,759	69%	2,678	67%
062FH118	3,000	1,578	53%	1,915	64%	1,878	63%	1,800	60%
062FH136	3,500	2,479	71%	3,133	90%	3,064	88%	2,922	83%
062FH162	3,500	2,524	72%	2,904	83%	2,850	81%	2,735	78%
063FH016	3,500	2,434	70%	3,099	89%	3,030	87%	2,887	82%
063FH022	3,500	2,566	73%	3,302	94%	3,226	92%	3,070	88%
063FH024	3,500	2,560	73%	3,281	94%	3,209	92%	3,060	87%
064FH084	3,000	1,654	55%	1,936	65%	1,901	63%	1,829	61%
064FH090	3,000	2,070	69%	2,455	82%	2,409	80%	2,316	77%
064FH096	3,000	1,892	63%	1,876	63%	1,874	62%	1,861	62%

064FH100	3,000	1,899	63%	2,221	74%	2,183	73%	2,104	70%
064FH106	3,000	2,159	72%	2,136	71%	2,134	71%	2,121	71%
064FH134	3,000	1,848	62%	1,834	61%	1,833	61%	1,822	61%
065FH006	1,500	923	62%	1,130	75%	1,052	70%	871	58%
065FH014	3,500	2,405	69%	2,351	67%	2,351	67%	2,322	66%
065FH050	1,500	762	51%	916	61%	1,054	70%	858	57%
075FH015	3,000	1,685	56%	1,317	44%	1,307	44%	1,295	43%
075FH018	3,000	2,249	75%	1,870	62%	1,852	62%	1,835	61%
075FH019	3,000	1,754	58%	1,416	47%	1,405	47%	1,394	46%
075FH020	3,000	1,932	64%	1,703	57%	1,688	56%	1,673	56%
075FH022	3,000	2,082	69%	1,656	55%	1,642	55%	1,628	54%
075FH023	3,000	1,926	64%	1,533	51%	1,521	51%	1,509	50%
075FH031	3,000	1,720	57%	1,368	46%	1,358	45%	1,349	45%
075FH034	1,500	966	64%	744	50%	741	49%	738	49%
075FH043	1,500	1,105	74%	907	60%	904	60%	901	60%
075FH050	3,000	2,226	74%	1,756	59%	1,736	58%	1,718	57%
075FH051	3,000	1,747	58%	1,376	46%	1,366	46%	1,355	45%
076FH002	4,000	2,456	61%	1,974	49%	1,953	49%	1,935	48%
076FH003	4,000	2,130	53%	1,688	42%	1,670	42%	1,655	41%
076FH004	4,000	2,911	73%	2,377	59%	2,350	59%	2,327	58%
076FH010	4,000	2,434	61%	3,181	80%	3,104	78%	2,946	74%
076FH012	4,000	2,357	59%	3,083	77%	3,008	75%	2,852	71%
076FH016	4,000	2,226	56%	2,897	72%	2,826	71%	2,681	67%
076FH019	4,000	2,296	57%	2,991	75%	2,919	73%	2,769	69%
076FH043	1,500	996	66%	814	54%	809	54%	804	54%
076FH063	4,000	2,948	74%	2,506	63%	2,481	62%	2,461	62%
076FH064	4,000	2,279	57%	1,891	47%	1,874	47%	1,859	46%
077FH004	3,500	2,564	73%	3,313	95%	3,240	93%	3,088	88%
077FH018	4,000	2,707	68%	3,514	88%	3,436	86%	3,276	82%
077FH019	4,000	2,564	64%	2,380	60%	2,331	58%	2,288	57%
077FH020	4,000	2,798	70%	2,613	65%	2,555	64%	2,506	63%
077FH021	4,000	2,301	58%	2,116	53%	2,072	52%	2,035	51%
077FH041	4,000	2,987	75%	2,829	71%	2,774	69%	2,727	68%
077FH042	4,000	2,778	69%	2,584	65%	2,524	63%	2,473	62%
077FH045	4,000	2,319	58%	2,143	54%	2,100	52%	2,064	52%
077FH055	2,500	1,712	68%	1,616	65%	1,586	63%	1,561	62%
077FH065	3,000	2,226	74%	6,649	100%	6,425	100%	6,298	100%
077FH080	1,500	982	65%	1,276	85%	1,258	84%	1,243	83%
077FH087	3,000	1,786	60%	1,912	64%	1,883	63%	1,859	62%
077FH097	3,000	1,952	65%	1,939	65%	1,901	63%	1,869	62%
078FH005	3,000	2,113	70%	2,034	68%	2,010	67%	1,987	66%
081FH002	3,000	2,061	69%	2,011	67%	3,748	100%	3,692	100%
089FH024	3,500	2,550	73%	2,171	62%	2,334	67%	2,329	67%
089FH027	3,500	2,512	72%	2,144	61%	2,358	67%	2,353	67%

089FH031	3,500	2,507	72%	2,149	61%	2,455	70%	2,450	70%
089FH046	3,500	1,826	52%	1,623	46%	1,913	55%	1,905	54%
090FH009	1,500	1,066	71%	895	60%	892	59%	889	59%
090FH016	2,500	1,387	55%	1,207	48%	1,199	48%	1,192	48%
090FH022	3,000	2,142	71%	1,884	63%	1,873	62%	1,864	62%
090FH026	2,500	1,692	68%	1,453	58%	1,447	58%	1,441	58%
090FH031	2,500	1,384	55%	1,196	48%	1,191	48%	1,186	47%
090FH044	3,000	1,986	66%	1,723	57%	1,710	57%	1,699	57%
090FH045	3,000	1,584	53%	1,373	46%	1,360	45%	1,350	45%
090FH048	1,500	788	53%	673	45%	668	45%	663	44%
090FH052	1,500	884	59%	771	51%	765	51%	761	51%
090FH063	3,500	2,597	74%	2,370	68%	2,353	67%	2,339	67%
090FH064	1,500	883	59%	787	52%	782	52%	778	52%
090FH077	3,500	1,805	52%	1,610	46%	1,617	46%	1,610	46%
090FH084	3,500	2,027	58%	1,846	53%	1,835	52%	1,826	52%
090FH094	3,500	1,982	57%	1,792	51%	1,782	51%	1,774	51%
090FH112	2,500	1,568	63%	1,405	56%	1,396	56%	1,388	56%
090FH116	3,500	2,130	61%	1,942	55%	1,928	55%	1,917	55%
090FH131	3,500	2,045	58%	1,880	54%	1,866	53%	1,855	53%
090FH140	3,500	2,288	65%	2,138	61%	2,120	61%	2,106	60%
090FH154	3,500	2,301	66%	2,138	61%	2,122	61%	2,111	60%
091FH007	1,500	844	56%	764	51%	754	50%	747	50%
091FH009	1,500	1,044	70%	942	63%	928	62%	917	61%
091FH039	1,500	791	53%	718	48%	708	47%	700	47%
091FH051	3,000	2,080	69%	2,800	93%	2,758	92%	2,726	91%
091FH058	3,000	2,040	68%	2,061	69%	2,029	68%	2,005	67%
091FH059	3,000	1,851	62%	1,831	61%	1,797	60%	1,771	59%
091FH060	3,000	1,961	65%	1,807	60%	1,792	60%	1,780	59%
091FH065	3,000	2,079	69%	1,912	64%	1,895	63%	1,881	63%
091FH077	3,500	1,912	55%	1,815	52%	1,794	51%	1,779	51%
091FH081	3,500	1,942	55%	1,800	51%	1,786	51%	1,775	51%
091FH086	3,000	1,604	53%	1,527	51%	1,508	50%	1,494	50%
091FH090	1,500	834	56%	808	54%	797	53%	788	53%
091FH092	3,000	1,590	53%	2,848	95%	2,806	94%	2,774	92%
091FH096	3,000	2,086	70%	3,556	100%	3,500	100%	3,459	100%
091FH097	3,500	2,428	69%	3,009	86%	2,967	85%	2,935	84%
091FH099	1,500	1,008	67%	4,235	100%	4,156	100%	4,099	100%
091FH100	3,500	2,366	68%	2,504	72%	2,475	71%	2,453	70%
091FH101	3,500	2,138	61%	2,188	63%	2,164	62%	2,145	61%
091FH102	3,000	2,016	67%	2,318	77%	2,276	76%	2,246	75%
091FH103	3,500	2,338	67%	2,459	70%	2,431	69%	2,410	69%
092FH006	3,500	1,976	56%	1,886	54%	1,867	53%	1,849	53%
092FH009	3,500	2,419	69%	2,375	68%	2,348	67%	2,324	66%
092FH026	3,000	2,143	71%	2,137	71%	2,100	70%	2,069	69%

092FH035	3,000	2,098	70%	2,043	68%	2,024	67%	2,006	67%
092FH036	3,000	2,095	70%	2,099	70%	2,094	70%	2,067	69%
092FH037	3,000	2,070	69%	2,072	69%	2,067	69%	2,037	68%
092FH047	3,500	2,210	63%	2,167	62%	2,149	61%	2,132	61%
092FH048	3,500	2,117	60%	2,078	59%	2,062	59%	2,047	58%
092FH049	3,000	2,097	70%	2,060	69%	2,044	68%	2,029	68%
092FH051	3,000	1,962	65%	1,927	64%	1,912	64%	1,899	63%
092FH052	3,500	2,273	65%	2,234	64%	2,217	63%	2,202	63%
092FH053	3,500	2,086	60%	2,049	59%	2,034	58%	2,020	58%
092FH055	3,000	2,016	67%	1,982	66%	1,969	66%	1,956	65%
092FH056	3,000	1,975	66%	1,941	65%	1,927	64%	1,915	64%
092FH057	3,000	1,894	63%	1,928	64%	1,891	63%	1,863	62%
092FH058	3,000	1,705	57%	1,707	57%	1,675	56%	1,650	55%
092FH059	3,000	1,804	60%	1,798	60%	1,766	59%	1,741	58%
092FH061	3,000	1,531	51%	1,527	51%	1,508	50%	1,493	50%
092FH062	3,000	1,585	53%	1,580	53%	1,556	52%	1,538	51%
092FH063	1,500	792	53%	768	51%	756	50%	747	50%
092FH069	1,500	785	52%	2,312	100%	2,269	100%	2,239	100%
092FH072	3,000	1,871	62%	1,922	64%	1,895	63%	1,875	63%
092FH076	3,000	1,668	56%	1,753	58%	1,723	57%	1,702	57%
092FH080	3,500	1,755	50%	1,818	52%	1,791	51%	1,771	51%
092FH081	3,500	1,891	54%	1,970	56%	1,941	55%	1,923	55%
092FH109	3,500	1,847	53%	1,889	54%	1,882	54%	1,870	53%
092FH113	3,000	2,158	72%	2,199	73%	2,188	73%	2,168	72%
092FH121	3,000	1,850	62%	1,784	59%	1,765	59%	1,747	58%
093FH016	3,000	2,208	74%	2,191	73%	2,187	73%	2,162	72%
093FH020	3,000	2,153	72%	2,135	71%	2,130	71%	2,104	70%
093FH023	3,000	2,001	67%	1,982	66%	1,978	66%	1,953	65%
093FH032	3,000	1,770	59%	1,770	59%	1,770	59%	1,769	59%
093FH045	3,000	2,112	70%	2,101	70%	2,100	70%	2,091	70%
093FH081	3,500	2,517	72%	2,517	72%	2,519	72%	2,515	72%
093FH097	3,000	2,009	67%	2,009	67%	2,011	67%	2,008	67%
100FH021	3,500	2,558	73%	2,264	65%	2,149	61%	2,030	58%
103FH006	3,500	2,561	73%	2,399	69%	2,383	68%	2,373	68%
103FH008	3,000	1,892	63%	1,700	57%	1,695	57%	1,687	56%
103FH011	3,500	2,196	63%	2,063	59%	2,049	59%	2,039	58%
103FH041	3,500	2,359	67%	2,311	66%	2,289	65%	2,269	65%
103FH046	3,500	2,077	59%	2,030	58%	2,008	57%	1,991	57%
103FH051	3,500	2,325	66%	2,314	66%	2,288	65%	2,265	65%
103FH057	3,500	2,566	73%	2,598	74%	2,568	73%	2,538	73%
103FH066	3,500	2,602	74%	2,497	71%	3,243	93%	3,133	90%
103FH068	3,500	2,447	70%	2,332	67%	2,928	84%	2,823	81%
103FH069	3,500	2,093	60%	1,960	56%	2,314	66%	2,223	64%
103FH073	3,500	2,281	65%	2,157	62%	2,626	75%	2,526	72%

103FH074	3,500	1,954	56%	1,815	52%	2,101	60%	2,016	58%
103FH079	3,500	1,852	53%	1,706	49%	1,955	56%	1,871	53%
103FH084	3,500	1,905	54%	1,760	50%	2,034	58%	1,947	56%
103FH089	3,500	1,900	54%	1,756	50%	2,024	58%	1,934	55%
103FH090	3,500	1,832	52%	1,681	48%	1,929	55%	1,839	53%
103FH097	3,000	2,175	73%	2,068	69%	2,063	69%	2,035	68%
103FH118	3,500	1,779	51%	1,639	47%	1,847	53%	1,772	51%
103FH129	3,500	2,536	72%	2,454	70%	2,454	70%	2,418	69%
103FH144	3,500	2,525	72%	2,572	73%	2,539	73%	2,506	72%
104FH007	3,500	2,131	61%	1,984	57%	1,971	56%	1,963	56%
104FH015	3,500	2,374	68%	2,300	66%	2,279	65%	2,264	65%
104FH023	3,500	2,321	66%	2,457	70%	2,420	69%	2,395	68%
104FH024	1,500	910	61%	931	62%	914	61%	904	60%
104FH034	2,500	1,352	54%	1,379	55%	1,359	54%	1,346	54%
104FH040	2,500	1,260	50%	1,343	54%	1,319	53%	1,303	52%
104FH042	1,500	835	56%	821	55%	811	54%	805	54%
104FH053	1,500	1,101	73%	1,159	77%	1,140	76%	1,128	75%
104FH054	3,000	2,044	68%	2,157	72%	2,103	70%	2,068	69%
104FH055	1,500	922	61%	941	63%	926	62%	917	61%
104FH056	1,500	891	59%	907	60%	891	59%	882	59%
104FH059	1,500	1,000	67%	1,035	69%	1,018	68%	1,007	67%
104FH061	1,500	913	61%	933	62%	917	61%	907	60%
104FH062	1,500	888	59%	905	60%	888	59%	878	59%
104FH090	3,000	2,077	69%	2,144	71%	2,118	71%	2,101	70%
105FH001	1,500	915	61%	1,082	72%	1,060	71%	1,046	70%
105FH003	1,500	759	51%	808	54%	793	53%	783	52%
105FH004	3,500	2,494	71%	2,946	84%	2,878	82%	2,836	81%
105FH005	1,500	822	55%	862	57%	845	56%	834	56%
105FH006	1,500	1,118	75%	1,293	86%	1,267	84%	1,250	83%
105FH008	1,500	826	55%	876	58%	860	57%	849	57%
105FH009	1,500	1,037	69%	1,103	74%	1,079	72%	1,066	71%
105FH012	1,500	940	63%	992	66%	973	65%	961	64%
105FH015	3,500	1,883	54%	2,084	60%	2,041	58%	2,014	58%
105FH016	1,500	1,002	67%	1,069	71%	1,048	70%	1,036	69%
105FH024	3,500	1,893	54%	2,095	60%	2,053	59%	2,026	58%
105FH027	2,500	1,781	71%	1,944	78%	1,906	76%	1,882	75%
105FH030	3,000	2,208	74%	2,518	84%	2,465	82%	2,433	81%
105FH039	1,500	1,117	74%	1,999	100%	1,953	100%	1,927	100%
105FH041	1,500	938	63%	2,396	100%	2,342	100%	2,309	100%
105FH042	1,500	839	56%	969	65%	950	63%	939	63%
105FH052	3,000	2,170	72%	2,481	83%	2,428	81%	2,397	80%
105FH059	3,500	2,297	66%	2,668	76%	2,600	74%	2,563	73%
105FH061	3,500	2,277	65%	2,649	76%	2,580	74%	2,543	73%
105FH062	3,500	2,445	70%	2,880	82%	2,804	80%	2,764	79%

105FH073	3,500	2,292	65%	2,658	76%	2,590	74%	2,554	73%
105FH074	3,500	2,478	71%	2,917	83%	2,840	81%	2,800	80%
105FH078	3,500	2,083	60%	2,447	70%	2,364	68%	2,306	66%
105FH079	3,500	2,019	58%	2,369	68%	2,287	65%	2,229	64%
105FH080	3,500	1,765	50%	2,038	58%	1,965	56%	1,912	55%
105FH081	3,500	1,866	53%	2,151	61%	2,078	59%	2,023	58%
105FH083	3,500	1,811	52%	2,085	60%	2,012	57%	1,958	56%
105FH084	3,500	1,782	51%	2,029	58%	1,961	56%	1,909	55%
105FH085	3,500	1,777	51%	2,051	59%	1,978	57%	1,924	55%
105FH090	3,500	1,805	52%	2,133	61%	2,050	59%	1,993	57%
105FH091	3,500	1,959	56%	2,294	66%	2,214	63%	2,158	62%
105FH092	2,500	1,332	53%	1,523	61%	1,464	59%	1,421	57%
106FH004	500	367	73%	1,276	100%	1,273	100%	1,268	100%
107FH014	3,500	2,176	62%	2,262	65%	2,265	65%	2,262	65%
107FH021	3,500	2,026	58%	3,429	98%	3,430	98%	3,423	98%
117FH002	3,500	2,223	64%	2,888	83%	2,618	75%	2,527	72%
117FH005	3,500	2,441	70%	3,364	96%	3,031	87%	2,926	84%
117FH006	3,500	2,367	68%	3,074	88%	2,806	80%	2,723	78%
117FH007	3,500	2,269	65%	3,008	86%	2,714	78%	2,619	75%
118FH001	2,500	1,569	63%	1,891	76%	1,778	71%	1,719	69%
118FH012	2,500	1,549	62%	1,829	73%	1,706	68%	1,641	66%
118FH023	3,000	1,743	58%	1,996	67%	1,880	63%	1,811	60%
118FH032	3,000	2,141	71%	2,933	98%	2,672	89%	2,551	85%
118FH034	3,000	1,812	60%	2,406	80%	2,176	73%	2,035	68%
118FH038	3,000	1,941	65%	2,597	87%	2,350	78%	2,199	73%
118FH039	3,000	2,177	73%	3,082	100%	2,799	93%	2,671	89%
118FH040	3,000	1,833	61%	2,427	81%	2,198	73%	2,058	69%
118FH041	3,000	2,134	71%	3,127	100%	2,821	94%	2,654	88%
118FH042	3,000	2,151	72%	3,221	100%	2,895	97%	2,750	92%
118FH048	3,500	2,261	65%	4,505	100%	4,165	100%	4,009	100%
118FH049	3,000	1,789	60%	3,439	100%	2,986	100%	2,790	93%
118FH062	3,000	2,002	67%	2,595	87%	2,407	80%	2,311	77%
118FH076	3,000	2,139	71%	2,923	97%	2,646	88%	2,460	82%
118FH078	3,000	1,866	62%	3,354	100%	2,945	98%	2,761	92%
118FH079	3,000	1,742	58%	2,730	91%	2,432	81%	2,272	76%
118FH080	3,000	1,953	65%	3,410	100%	3,010	100%	2,829	94%
118FH081	3,000	1,883	63%	3,247	100%	2,858	95%	2,672	89%
118FH082	3,000	2,139	71%	3,682	100%	3,235	100%	3,014	100%
118FH084	3,000	2,181	73%	3,108	100%	2,805	94%	2,613	87%
118FH085	3,000	1,909	64%	2,568	86%	2,331	78%	2,174	72%
118FH086	3,000	1,896	63%	2,516	84%	2,276	76%	2,102	70%
118FH087	3,000	1,728	58%	2,283	76%	2,034	68%	1,829	61%
118FH088	3,000	1,770	59%	2,254	75%	2,025	67%	1,810	60%
118FH089	3,000	2,163	72%	2,983	99%	2,692	90%	2,478	83%

118FH091	3,000	1,701	57%	2,217	74%	1,998	67%	1,837	61%
130FH001	3,500	1,934	55%	5,537	100%	5,456	100%	5,325	100%
130FH002	3,500	1,809	52%	5,621	100%	5,522	100%	5,369	100%
130FH003	3,500	1,851	53%	6,792	100%	6,631	100%	6,407	100%
130FH004	3,500	1,920	55%	7,740	100%	7,542	100%	7,260	100%
130FH005	3,500	1,992	57%	9,123	100%	8,875	100%	8,488	100%
130FH006	3,500	1,928	55%	9,667	100%	9,381	100%	8,916	100%
144FH004	3,500	1,812	52%	7,426	100%	7,202	100%	6,790	100%
144FH005	3,500	1,765	50%	8,166	100%	7,912	100%	7,521	100%
144FH006	3,500	1,820	52%	7,962	100%	7,712	100%	7,292	100%
144FH007	3,500	1,809	52%	6,749	100%	6,554	100%	6,229	100%
144FH008	3,500	1,778	51%	5,274	100%	5,157	100%	4,956	100%
144FH009	3,500	1,888	54%	5,695	100%	5,597	100%	5,428	100%
144FH010	3,500	2,087	60%	5,742	100%	5,616	100%	5,424	100%
144FH011	3,500	2,244	64%	6,992	100%	6,811	100%	6,548	100%
144FH012	3,500	2,335	67%	6,170	100%	6,045	100%	5,863	100%
156FH001	3,500	2,532	72%	3,961	100%	3,863	100%	3,685	100%
157FH003	3,500	1,941	55%	3,280	94%	3,161	90%	2,881	82%
157FH004	3,500	1,811	52%	2,667	76%	2,570	73%	2,363	68%
157FH005	3,500	1,931	55%	2,948	84%	2,838	81%	2,613	75%
157FH007	3,500	2,009	57%	3,150	90%	3,023	86%	2,788	80%
157FH008	3,500	1,759	50%	2,505	72%	2,411	69%	2,227	64%
157FH009	3,500	2,317	66%	3,555	100%	3,436	98%	3,207	92%
157FH011	3,500	2,307	66%	3,470	99%	3,357	96%	3,136	90%
157FH021	3,500	2,138	61%	3,324	95%	3,198	91%	2,971	85%
171FH002	3,500	1,781	51%	3,207	92%	3,067	88%	2,755	79%
171FH006	3,000	1,537	51%	2,025	68%	1,981	66%	1,847	62%
171FH007	3,000	1,550	52%	2,080	69%	2,031	68%	1,888	63%
		2013 Av	vailable F	ire Flow 75	- 100% of	Fire Flow G	àoal		
045FH001	3,500	2,993	86%	3,479	99%	3,399	97%	3,306	94%
047FH001	3,000	2,355	79%	2,542	85%	2,521	84%	2,473	82%
047FH004	3,000	2,288	76%	2,476	83%	2,455	82%	2,407	80%
047FH008	3,000	2,364	79%	2,550	85%	2,529	84%	2,481	83%
047FH009	2,500	2,362	94%	2,548	100%	2,527	100%	2,479	99%
047FH013	2,500	2,469	99%	2,657	100%	2,635	100%	2,586	100%
047FH051	3,000	2,677	89%	3,035	100%	2,875	96%	2,788	93%
047FH054	1,500	1,233	82%	1,669	100%	1,626	100%	1,536	100%
047FH057	3,000	2,556	85%	3,398	100%	3,302	100%	3,104	100%
047FH065	1,500	1,140	76%	1,429	95%	1,400	93%	1,338	89%
047FH099	3,000	2,368	79%	2,592	86%	2,573	86%	2,533	84%
047FH101	1,500	1,482	99%	1,504	100%	1,504	100%	1,504	100%
047FH110	3,500	2,626	75%	2,838	81%	2,799	80%	2,723	78%
047FH115	1,500	1,188	79%	1,683	100%	1,635	100%	1,534	100%
047EU117	3.000	2,355	79%	2,546	85%	2,524	84%	2,475	83%

047FH118	3,000	2,353	78%	2,541	85%	2,519	84%	2,471	82%
047FH119	3,000	2,356	79%	2,543	85%	2,522	84%	2,474	82%
048FH001	1,500	1,278	85%	1,239	83%	1,215	81%	1,163	78%
048FH002	1,500	1,138	76%	1,099	73%	1,073	72%	1,021	68%
048FH003	1,500	1,137	76%	1,101	73%	1,078	72%	1,029	69%
048FH004	1,500	1,241	83%	1,203	80%	1,178	79%	1,126	75%
048FH006	1,500	1,159	77%	1,125	75%	1,102	73%	1,055	70%
048FH007	1,500	1,257	84%	1,220	81%	1,196	80%	1,147	76%
048FH008	1,500	1,345	90%	1,342	89%	1,316	88%	1,262	84%
048FH014	1,500	1,395	93%	1,466	98%	1,423	95%	1,322	88%
048FH015	1,500	1,358	91%	1,373	92%	1,347	90%	1,288	86%
048FH016	1,500	1,367	91%	1,398	93%	1,372	91%	1,297	86%
048FH017	1,500	1,398	93%	1,472	98%	1,425	95%	1,325	88%
048FH018	1,500	1,422	95%	1,496	100%	1,448	97%	1,350	90%
048FH019	1,500	1,462	97%	1,462	97%	1,462	97%	1,461	97%
048FH055	1,500	1,363	91%	1,366	91%	1,366	91%	1,365	91%
048FH056	1,500	1,361	91%	1,363	91%	1,363	91%	1,363	91%
048FH068	3,000	2,425	81%	2,609	87%	2,588	86%	2,539	85%
048FH069	3,000	2,312	77%	2,505	83%	2,483	83%	2,433	81%
048FH071	2,500	2,465	99%	2,651	100%	2,630	100%	2,580	100%
048FH074	1,500	1,500	100%	1,582	100%	1,532	100%	1,430	95%
048FH088	1,500	1,467	98%	1,541	100%	1,493	100%	1,396	93%
048FH092	1,500	1,478	99%	1,550	100%	1,502	100%	1,402	93%
048FH093	1,500	1,412	94%	1,486	99%	1,438	96%	1,339	89%
048FH095	1,500	1,363	91%	1,381	92%	1,355	90%	1,292	86%
048FH096	1,500	1,329	89%	1,299	87%	1,276	85%	1,226	82%
048FH097	1,500	1,405	94%	1,479	99%	1,431	95%	1,330	89%
048FH098	1,500	1,404	94%	1,477	98%	1,429	95%	1,330	89%
048FH099	1,500	1,413	94%	1,485	99%	1,437	96%	1,338	89%
048FH100	1,500	1,411	94%	1,485	99%	1,436	96%	1,334	89%
048FH101	1,500	1,397	93%	1,467	98%	1,422	95%	1,321	88%
048FH102	1,500	1,396	93%	1,462	97%	1,421	95%	1,321	88%
048FH103	1,500	1,398	93%	1,468	98%	1,422	95%	1,323	88%
048FH104	1,500	1,416	94%	1,487	99%	1,439	96%	1,340	89%
048FH105	1,500	1,401	93%	1,466	98%	1,425	95%	1,326	88%
048FH106	1,500	1,391	93%	1,442	96%	1,415	94%	1,317	88%
048FH107	1,500	1,353	90%	1,354	90%	1,329	89%	1,276	85%
048FH108	1,500	1,378	92%	1,418	95%	1,390	93%	1,304	87%
048FH109	1,500	1,300	87%	1,264	84%	1,241	83%	1,193	80%
048FH115	1,500	1,373	92%	1,398	93%	1,373	92%	1,302	87%
048FH116	1,500	1,286	86%	1,250	83%	1,226	82%	1,177	78%
048FH117	1,500	1,186	79%	1,152	77%	1,130	75%	1,084	72%
048FH118	1,500	1,347	90%	1,342	89%	1,317	88%	1,268	85%
048FH119	1,500	1,381	92%	1,417	94%	1,393	93%	1,311	87%

048FH120	1,500	1,408	94%	1,479	99%	1,432	95%	1,335	89%
048FH121	1,500	1,476	98%	1,542	100%	1,496	100%	1,401	93%
048FH122	1,500	1,443	96%	1,511	100%	1,465	98%	1,369	91%
048FH123	1,500	1,490	99%	1,552	100%	1,508	100%	1,417	94%
048FH126	1,500	1,437	96%	1,500	100%	1,456	97%	1,365	91%
048FH128	1,500	1,471	98%	1,535	100%	1,490	99%	1,396	93%
048FH129	1,500	1,401	93%	1,462	97%	1,423	95%	1,327	88%
048FH130	1,500	1,421	95%	1,491	99%	1,444	96%	1,346	90%
048FH131	1,500	1,453	97%	1,517	100%	1,472	98%	1,380	92%
048FH132	1,500	1,362	91%	1,376	92%	1,351	90%	1,291	86%
048FH134	1,500	1,438	96%	1,441	96%	1,441	96%	1,440	96%
048FH138	1,500	1,453	97%	1,526	100%	1,477	98%	1,375	92%
048FH141	1,500	1,192	79%	2,024	100%	1,931	100%	1,727	100%
048FH143	3,000	2,305	77%	2,489	83%	2,468	82%	2,420	81%
048FH144	3,000	2,366	79%	2,544	85%	2,524	84%	2,477	83%
048FH145	3,000	2,389	80%	2,571	86%	2,550	85%	2,503	83%
048FH146	3,000	2,420	81%	2,603	87%	2,582	86%	2,533	84%
048FH147	3,000	2,451	82%	2,629	88%	2,609	87%	2,561	85%
048FH148	3,000	2,438	81%	2,623	87%	2,601	87%	2,552	85%
048FH149	3,000	2,383	79%	2,565	86%	2,544	85%	2,496	83%
048FH151	1,500	1,249	83%	1,205	80%	1,177	78%	1,119	75%
048FH154	1,500	1,352	90%	1,356	90%	1,329	89%	1,272	85%
048FH155	1,500	1,379	92%	1,421	95%	1,393	93%	1,304	87%
048FH156	1,500	1,365	91%	1,384	92%	1,358	91%	1,293	86%
048FH157	1,500	1,351	90%	1,353	90%	1,328	89%	1,277	85%
048FH158	3,000	2,332	78%	2,524	84%	2,502	83%	2,452	82%
049FH002	3,500	2,949	84%	3,794	100%	3,639	100%	3,312	95%
049FH004	1,500	1,476	98%	1,542	100%	1,495	100%	1,397	93%
049FH005	1,500	1,473	98%	1,537	100%	1,491	99%	1,395	93%
049FH006	1,500	1,495	100%	1,558	100%	1,512	100%	1,418	95%
049FH014	1,500	1,493	100%	1,555	100%	1,509	100%	1,414	94%
049FH015	1,500	1,481	99%	1,545	100%	1,499	100%	1,403	94%
049FH016	1,500	1,445	96%	1,511	100%	1,465	98%	1,368	91%
049FH017	1,500	1,455	97%	1,519	100%	1,474	98%	1,379	92%
049FH018	1,500	1,439	96%	1,504	100%	1,458	97%	1,363	91%
049FH020	1,500	1,494	100%	1,553	100%	1,509	100%	1,417	94%
049FH021	1,500	1,438	96%	1,501	100%	1,456	97%	1,363	91%
049FH023	1,500	1,407	94%	1,475	98%	1,428	95%	1,330	89%
049FH024	1,500	1,407	94%	1,476	98%	1,429	95%	1,331	89%
050FH013	3,000	2,851	95%	3,363	100%	3,112	100%	2,632	88%
050FH019	3,000	2,863	95%	3,288	100%	3,034	100%	2,559	85%
050FH020	3,000	2,948	98%	3,370	100%	3,113	100%	2,636	88%
050FH029	3,000	2,828	94%	3,315	100%	3,002	100%	2,434	81%
050FH030	3,000	2,821	94%	3,278	100%	2,970	99%	2,415	81%

050FH031	3,000	2,294	76%	2,748	92%	2,434	81%	1,871	62%
060FH001	3,500	2,982	85%	3,143	90%	3,103	89%	3,025	86%
061FH009	3,000	2,400	80%	2,828	94%	2,776	93%	2,669	89%
061FH011	3,000	2,978	99%	3,477	100%	3,411	100%	3,274	100%
061FH012	3,000	2,394	80%	2,780	93%	2,733	91%	2,635	88%
061FH014	3,000	2,475	82%	2,849	95%	2,800	93%	2,700	90%
061FH034	2,500	1,964	79%	2,285	91%	2,237	89%	2,139	86%
061FH039	2,500	1,893	76%	2,224	89%	2,176	87%	2,075	83%
061FH043	3,000	2,601	87%	2,834	94%	2,785	93%	2,690	90%
061FH051	1,500	1,352	90%	1,441	96%	1,423	95%	1,387	92%
061FH052	1,500	1,219	81%	1,322	88%	1,301	87%	1,260	84%
061FH063	3,000	2,268	76%	1,905	63%	1,865	62%	1,805	60%
061FH064	3,000	2,519	84%	2,028	68%	1,988	66%	1,933	64%
061FH080	3,000	2,734	91%	2,105	70%	2,063	69%	2,012	67%
061FH084	2,500	1,933	77%	2,254	90%	2,207	88%	2,109	84%
061FH085	3,000	2,423	81%	2,815	94%	2,761	92%	2,650	88%
061FH090	3,500	2,899	83%	2,824	81%	2,782	79%	2,706	77%
062FH006	3,500	3,453	99%	4,101	100%	4,005	100%	3,805	100%
062FH008	3,000	2,747	92%	3,205	100%	3,139	100%	3,001	100%
062FH009	3,500	3,388	97%	3,928	100%	3,846	100%	3,675	100%
062FH010	3,000	2,856	95%	3,310	100%	3,243	100%	3,104	100%
062FH013	3,500	3,290	94%	3,765	100%	3,691	100%	3,535	100%
062FH023	3,000	2,557	85%	2,897	97%	2,848	95%	2,745	91%
062FH028	3,000	2,700	90%	3,054	100%	3,002	100%	2,892	96%
062FH031	3,000	2,793	93%	2,971	99%	2,937	98%	2,865	95%
062FH032	3,000	2,889	96%	3,075	100%	3,039	100%	2,965	99%
062FH033	3,000	2,978	99%	3,221	100%	3,174	100%	3,079	100%
062FH034	3,000	2,555	85%	2,900	97%	2,852	95%	2,751	92%
062FH037	3,000	2,983	99%	3,196	100%	3,155	100%	3,071	100%
062FH081	3,000	2,615	87%	2,814	94%	2,770	92%	2,687	90%
062FH082	3,000	2,940	98%	3,176	100%	3,130	100%	3,036	100%
062FH088	3,000	2,374	79%	2,596	87%	2,542	85%	2,436	81%
062FH092	2,500	2,004	80%	2,137	85%	2,094	84%	2,006	80%
062FH093	1,500	1,456	97%	1,451	97%	1,433	96%	1,398	93%
062FH099	1,500	1,137	76%	1,167	78%	1,146	76%	1,103	74%
062FH115	4,000	3,114	78%	3,053	76%	3,001	75%	2,910	73%
062FH116	4,000	3,071	77%	3,007	75%	2,956	74%	2,869	72%
062FH123	3,500	3,201	91%	4,425	100%	4,308	100%	4,070	100%
062FH125	3,500	3,190	91%	4,440	100%	4,324	100%	4,085	100%
062FH130	1,500	1,177	78%	1,239	83%	1,224	82%	1,191	79%
062FH142	3,500	3,489	100%	4,184	100%	4,074	100%	3,842	100%
062FH148	3,500	3,240	93%	3,821	100%	3,733	100%	3,549	100%
062FH164	3,500	3,110	89%	3,713	100%	3,614	100%	3,404	97%
062FH165	3,500	2,891	83%	3,427	98%	3,338	95%	3,148	90%

062FH176	3,500	3,208	92%	4,456	100%	4,337	100%	4,093	100%
063FH002	3,500	3,473	99%	5,052	100%	4,915	100%	4,637	100%
063FH003	3,500	3,389	97%	4,830	100%	4,704	100%	4,448	100%
063FH004	3,500	3,442	98%	5,094	100%	4,959	100%	4,684	100%
063FH008	3,500	3,109	89%	4,290	100%	4,184	100%	3,967	100%
063FH009	3,500	3,222	92%	4,479	100%	4,365	100%	4,135	100%
063FH010	3,500	3,365	96%	4,821	100%	4,697	100%	4,445	100%
063FH011	3,500	2,999	86%	4,052	100%	3,959	100%	3,771	100%
063FH013	3,500	2,912	83%	3,861	100%	3,768	100%	3,579	100%
063FH015	3,500	2,890	83%	3,908	100%	3,813	100%	3,618	100%
063FH017	3,500	3,454	99%	5,044	100%	4,907	100%	4,632	100%
063FH018	3,500	3,484	100%	5,004	100%	4,877	100%	4,624	100%
063FH019	3,500	2,974	85%	4,039	100%	3,939	100%	3,733	100%
063FH020	3,500	3,373	96%	4,821	100%	4,693	100%	4,434	100%
063FH021	3,500	3,312	95%	4,673	100%	4,551	100%	4,303	100%
063FH025	3,500	3,402	97%	4,799	100%	4,681	100%	4,444	100%
063FH027	3,000	2,982	99%	3,975	100%	3,868	100%	3,659	100%
063FH030	3,000	2,862	95%	3,682	100%	3,588	100%	3,405	100%
063FH036	3,500	3,194	91%	4,414	100%	4,309	100%	4,097	100%
063FH039	3,000	2,622	87%	3,264	100%	3,190	100%	3,045	100%
063FH047	3,500	2,730	78%	3,508	100%	3,432	98%	3,277	94%
063FH067	3,000	2,825	94%	3,604	100%	3,511	100%	3,330	100%
063FH068	3,000	2,902	97%	3,727	100%	3,631	100%	3,445	100%
063FH069	3,000	2,930	98%	3,776	100%	3,681	100%	3,494	100%
063FH070	3,000	2,999	100%	3,892	100%	3,793	100%	3,600	100%
063FH073	3,000	2,290	76%	2,968	99%	2,856	95%	2,614	87%
063FH078	3,000	2,621	87%	3,224	100%	3,156	100%	3,021	100%
063FH079	3,500	3,238	93%	4,484	100%	4,374	100%	4,151	100%
063FH080	3,500	3,254	93%	4,527	100%	4,411	100%	4,177	100%
064FH018	3,000	2,924	97%	3,399	100%	3,083	100%	2,514	84%
064FH019	3,000	2,973	99%	3,510	100%	3,158	100%	2,530	84%
064FH048	2,500	2,452	98%	2,424	97%	2,422	97%	2,410	96%
064FH053	2,500	2,102	84%	2,078	83%	2,076	83%	2,059	82%
064FH069	2,500	1,920	77%	1,919	77%	1,917	77%	1,909	76%
064FH076	2,500	2,023	81%	2,017	81%	2,015	81%	2,007	80%
064FH095	3,000	2,655	88%	2,629	88%	2,628	88%	2,616	87%
064FH097	3,000	2,412	80%	2,388	80%	2,386	80%	2,375	79%
064FH099	3,000	2,266	76%	2,703	90%	2,652	88%	2,550	85%
064FH103	1,500	1,484	99%	1,467	98%	1,465	98%	1,452	97%
075FH016	3,000	2,369	79%	1,869	62%	1,850	62%	1,831	61%
075FH038	1,500	1,203	80%	945	63%	940	63%	936	62%
075FH052	3,000	2,352	78%	1,875	62%	1,856	62%	1,838	61%
076FH005	4,000	3,770	94%	3,177	79%	3,137	78%	3,103	78%
076FH015	3,000	2,522	84%	3,330	100%	3,249	100%	3,079	100%

076FH020	3,000	2,680	89%	2,205	73%	2,183	73%	2,163	72%
076FH025	3,000	2,636	88%	2,157	72%	2,136	71%	2,117	71%
076FH037	1,500	1,355	90%	1,093	73%	1,086	72%	1,080	72%
076FH039	1,500	1,363	91%	1,090	73%	1,083	72%	1,077	72%
076FH041	1,500	1,491	99%	1,216	81%	1,209	81%	1,203	80%
076FH052	4,000	3,851	96%	3,747	94%	3,677	92%	3,615	90%
076FH059	3,000	2,672	89%	2,287	76%	2,268	76%	2,252	75%
076FH062	4,000	3,018	75%	2,572	64%	2,546	64%	2,525	63%
077FH001	3,500	3,195	91%	4,340	100%	4,237	100%	4,030	100%
077FH002	3,500	3,446	98%	5,027	100%	4,901	100%	4,648	100%
077FH003	3,500	2,770	79%	3,673	100%	3,588	100%	3,414	98%
077FH005	3,000	2,766	92%	3,623	100%	3,540	100%	3,371	100%
077FH006	3,000	2,741	91%	3,584	100%	3,502	100%	3,336	100%
077FH007	3,000	2,549	85%	3,258	100%	3,188	100%	3,044	100%
077FH008	3,000	2,621	87%	3,371	100%	3,297	100%	3,146	100%
077FH011	3,000	2,654	88%	3,430	100%	3,355	100%	3,199	100%
077FH013	3,000	2,650	88%	3,420	100%	3,345	100%	3,191	100%
077FH015	3,500	2,729	78%	3,557	100%	3,476	99%	3,310	95%
077FH016	3,000	2,992	100%	3,928	100%	3,841	100%	3,664	100%
077FH022	4,000	3,726	93%	3,615	90%	3,549	89%	3,490	87%
077FH023	4,000	3,376	84%	3,224	81%	3,156	79%	3,096	77%
077FH024	3,500	3,460	99%	4,877	100%	4,756	100%	4,516	100%
077FH026	3,000	2,959	99%	3,715	100%	3,636	100%	3,479	100%
077FH030	3,000	2,919	97%	3,689	100%	3,614	100%	3,461	100%
077FH036	4,000	3,061	77%	2,883	72%	2,819	70%	2,764	69%
077FH056	2,500	2,152	86%	2,097	84%	2,056	82%	2,020	81%
077FH059	1,500	1,376	92%	1,255	84%	1,237	82%	1,223	82%
077FH062	4,000	3,816	95%	3,692	92%	3,639	91%	3,594	90%
077FH076	1,500	1,380	92%	1,430	95%	1,409	94%	1,391	93%
077FH079	1,500	1,436	96%	1,350	90%	1,332	89%	1,316	88%
077FH082	2,500	2,099	84%	2,779	100%	2,739	100%	2,705	100%
077FH096	3,000	2,352	78%	2,854	95%	2,801	93%	2,692	90%
077FH100	4,000	3,060	76%	2,902	73%	2,845	71%	2,796	70%
077FH101	3,000	2,747	92%	3,575	100%	3,495	100%	3,331	100%
077FH103	3,000	2,712	90%	3,416	100%	3,346	100%	3,204	100%
077FH104	4,000	3,570	89%	3,445	86%	3,379	84%	3,319	83%
077FH105	4,000	3,252	81%	3,107	78%	3,047	76%	2,993	75%
077FH107	3,000	2,888	96%	3,632	100%	3,558	100%	3,408	100%
077FH108	3,500	3,289	94%	4,747	100%	4,627	100%	4,386	100%
078FH006	3,000	2,402	80%	2,328	78%	2,301	77%	2,274	76%
078FH007	3,000	2,482	83%	2,407	80%	2,379	79%	2,350	78%
078FH008	3,000	2,821	94%	2,752	92%	2,720	91%	2,685	89%
078FH009	3,000	2,839	95%	2,775	92%	2,742	91%	2,707	90%
078FH011	3,000	2,978	99%	2,911	97%	2,878	96%	2,839	95%

078FH015	3,000	2,263	75%	2,191	73%	2,167	72%	2,143	71%
078FH026	3,000	2,652	88%	2,607	87%	2,605	87%	2,581	86%
079FH103	3,500	3,444	98%	3,391	97%	3,393	97%	3,364	96%
079FH129	3,000	2,640	88%	2,589	86%	2,585	86%	2,557	85%
081FH003	3,000	2,809	94%	2,735	91%	3,932	100%	3,861	100%
081FH004	2,500	2,249	90%	2,194	88%	2,693	100%	2,653	100%
089FH010	3,000	2,362	79%	1,949	65%	2,008	67%	2,004	67%
089FH015	3,000	2,828	94%	2,360	79%	2,484	83%	2,478	83%
089FH017	2,500	2,298	92%	1,910	76%	1,917	77%	1,914	77%
089FH019	3,000	2,564	85%	2,163	72%	2,278	76%	2,273	76%
089FH022	1,500	1,321	88%	1,099	73%	1,099	73%	1,098	73%
089FH025	3,500	2,811	80%	2,401	69%	2,615	75%	2,609	75%
089FH030	3,500	2,641	75%	2,266	65%	2,555	73%	2,549	73%
090FH001	1,500	1,433	96%	1,195	80%	1,189	79%	1,184	79%
090FH006	3,000	2,557	85%	2,213	74%	2,198	73%	2,186	73%
090FH007	3,000	2,725	91%	2,395	80%	2,377	79%	2,363	79%
090FH028	1,500	1,305	87%	1,115	74%	1,111	74%	1,107	74%
090FH030	3,000	2,580	86%	2,302	77%	2,288	76%	2,277	76%
090FH034	1,500	1,152	77%	990	66%	986	66%	983	66%
090FH039	3,000	2,465	82%	2,160	72%	2,137	71%	2,119	71%
090FH040	3,000	2,717	91%	2,379	79%	2,356	79%	2,339	78%
090FH061	1,500	1,174	78%	1,046	70%	1,039	69%	1,033	69%
090FH074	3,500	2,843	81%	2,606	74%	2,587	74%	2,574	74%
090FH078	3,000	2,868	96%	2,659	89%	2,639	88%	2,625	88%
090FH079	3,500	3,288	94%	3,011	86%	3,310	95%	3,296	94%
090FH099	3,500	3,288	94%	3,098	89%	3,073	88%	3,057	87%
090FH102	3,500	3,268	93%	3,081	88%	3,057	87%	3,040	87%
090FH117	2,500	1,882	75%	7,923	100%	7,836	100%	7,760	100%
090FH123	2,500	1,936	77%	1,783	71%	1,769	71%	1,758	70%
090FH125	3,500	2,936	84%	2,757	79%	2,734	78%	2,716	78%
090FH128	3,500	2,961	85%	2,774	79%	2,751	79%	2,735	78%
091FH003	3,000	2,584	86%	2,441	81%	2,394	80%	2,356	79%
091FH011	1,500	1,422	95%	2,148	100%	2,122	100%	2,101	100%
091FH012	2,500	2,043	82%	1,894	76%	1,871	75%	1,853	74%
091FH020	2,500	2,285	91%	2,144	86%	2,124	85%	2,108	84%
091FH025	3,000	2,960	99%	2,840	95%	2,810	94%	2,787	93%
091FH040	2,500	2,168	87%	2,041	82%	2,013	81%	1,990	80%
091FH056	3,000	2,270	76%	2,221	74%	2,191	73%	2,168	72%
091FH074	3,500	3,369	96%	3,296	94%	3,254	93%	3,222	92%
091FH089	3,000	2,403	80%	2,507	84%	2,469	82%	2,440	81%
091FH098	3,500	2,629	75%	2,654	76%	2,623	75%	2,600	74%
091FH119	3,000	2,701	90%	2,558	85%	2,523	84%	2,495	83%
092FH001	3,500	2,949	84%	2,861	82%	2,829	81%	2,796	80%
092FH025	1,500	1,258	84%	1,200	80%	1,183	79%	1,169	78%

092FH027	3,000	2,266	76%	2,274	76%	2,234	74%	2,202	73%
092FH029	3,000	2,624	87%	2,650	88%	2,606	87%	2,572	86%
092FH030	3,000	2,458	82%	2,430	81%	2,395	80%	2,365	79%
092FH065	1,500	1,492	99%	1,484	99%	1,463	98%	1,447	96%
092FH074	1,500	1,477	98%	1,517	100%	1,492	99%	1,473	98%
092FH079	3,500	3,408	97%	3,749	100%	3,695	100%	3,658	100%
092FH082	3,500	3,455	99%	3,888	100%	3,829	100%	3,787	100%
092FH083	3,500	3,150	90%	3,578	100%	3,518	100%	3,477	99%
092FH085	3,000	2,855	95%	2,870	96%	2,838	95%	2,812	94%
092FH086	3,000	2,759	92%	2,770	92%	2,740	91%	2,715	91%
092FH088	3,000	2,907	97%	2,930	98%	2,897	97%	2,871	96%
092FH090	3,000	2,914	97%	2,943	98%	2,910	97%	2,883	96%
092FH103	3,000	2,451	82%	2,431	81%	2,420	81%	2,403	80%
092FH105	3,000	2,536	85%	2,538	85%	2,527	84%	2,509	84%
092FH108	3,000	2,837	95%	2,926	98%	2,908	97%	2,880	96%
092FH110	3,000	2,956	99%	2,997	100%	2,982	99%	2,957	99%
092FH111	3,000	2,710	90%	2,758	92%	2,742	91%	2,716	91%
092FH114	3,000	2,395	80%	2,430	81%	2,388	80%	2,354	78%
093FH003	3,000	2,559	85%	2,642	88%	2,637	88%	2,608	87%
093FH006	3,000	2,849	95%	3,115	100%	3,110	100%	3,076	100%
093FH008	3,000	2,909	97%	2,954	98%	2,950	98%	2,920	97%
093FH018	3,000	2,765	92%	2,765	92%	2,760	92%	2,729	91%
093FH019	3,000	2,439	81%	2,425	81%	2,424	81%	2,412	80%
093FH021	3,000	2,390	80%	2,377	79%	2,372	79%	2,343	78%
093FH022	3,000	2,468	82%	2,454	82%	2,453	82%	2,441	81%
093FH024	3,000	2,437	81%	2,423	81%	2,422	81%	2,410	80%
093FH025	3,000	2,613	87%	2,599	87%	2,598	87%	2,584	86%
093FH046	3,000	2,492	83%	2,476	83%	2,475	82%	2,460	82%
093FH047	3,000	2,504	83%	2,490	83%	2,489	83%	2,476	83%
093FH048	3,000	2,725	91%	2,711	90%	2,709	90%	2,695	90%
093FH051	3,000	2,617	87%	2,603	87%	2,602	87%	2,589	86%
093FH052	3,000	2,890	96%	2,875	96%	2,874	96%	2,854	95%
093FH058	3,000	2,674	89%	2,649	88%	2,639	88%	2,619	87%
093FH069	1,500	1,293	86%	1,293	86%	1,294	86%	1,293	86%
093FH085	2,500	1,924	77%	1,924	77%	1,926	77%	1,923	77%
093FH090	3,000	2,992	100%	2,991	100%	2,994	100%	2,990	100%
093FH094	3,000	2,672	89%	2,671	89%	2,673	89%	2,670	89%
093FH099	3,000	2,294	76%	2,293	76%	2,296	77%	2,292	76%
093FH125	3,000	2,892	96%	2,875	96%	2,873	96%	2,853	95%
093FH128	3,000	2,828	94%	2,812	94%	2,811	94%	2,792	93%
093FH132	3,000	2,829	94%	2,839	95%	2,835	94%	2,806	94%
093FH133	3,000	2,457	82%	2,449	82%	2,444	81%	2,417	81%
093FH134	3,000	2,465	82%	2,454	82%	2,449	82%	2,422	81%
094FH033	3,500	3,472	99%	4,757	100%	4,795	100%	4,845	100%

096FH046	3,500	3,478	99%	3,545	100%	3,619	100%	3,694	100%
096FH060	3,500	3,185	91%	3,249	93%	3,327	95%	3,395	97%
100FH010	3,500	3,002	86%	2,308	66%	2,163	62%	2,010	57%
100FH011	3,500	3,290	94%	2,362	67%	2,212	63%	2,056	59%
100FH012	3,500	3,142	90%	2,345	67%	2,198	63%	2,044	58%
100FH013	3,500	3,357	96%	2,386	68%	2,237	64%	2,080	59%
100FH014	3,500	3,203	92%	2,364	68%	2,217	63%	2,063	59%
100FH015	3,500	3,065	88%	2,357	67%	2,221	63%	2,079	59%
100FH017	3,500	3,082	88%	2,881	82%	2,823	81%	2,760	79%
100FH018	3,500	3,098	89%	2,916	83%	2,864	82%	2,806	80%
100FH019	3,500	2,882	82%	2,786	80%	2,748	79%	2,704	77%
100FH020	3,500	2,667	76%	2,275	65%	2,144	61%	2,111	60%
100FH022	3,500	3,345	96%	3,407	97%	3,398	97%	3,388	97%
100FH031	3,500	3,202	91%	2,575	74%	2,440	70%	2,299	66%
103FH005	3,500	2,973	85%	2,779	79%	2,763	79%	2,753	79%
103FH014	3,000	2,922	97%	2,766	92%	2,756	92%	2,734	91%
103FH024	3,500	3,084	88%	3,022	86%	3,028	87%	2,984	85%
103FH025	3,500	3,397	97%	3,377	96%	3,393	97%	3,336	95%
103FH028	3,500	2,704	77%	2,645	76%	2,622	75%	2,600	74%
103FH037	3,000	2,563	85%	2,482	83%	2,483	83%	2,447	82%
103FH044	3,000	2,969	99%	2,921	97%	2,933	98%	2,880	96%
103FH048	3,000	2,579	86%	2,486	83%	2,489	83%	2,449	82%
103FH061	3,500	2,849	81%	2,761	79%	3,564	100%	3,445	98%
103FH063	3,500	3,048	87%	3,191	91%	3,147	90%	3,101	89%
103FH076	3,500	2,955	84%	3,089	88%	3,045	87%	3,000	86%
103FH077	3,500	3,336	95%	3,564	100%	3,508	100%	3,450	99%
103FH080	3,500	2,925	84%	3,065	88%	3,019	86%	2,971	85%
103FH085	3,500	2,841	81%	2,961	85%	2,917	83%	2,872	82%
103FH087	3,500	3,135	90%	3,333	95%	3,279	94%	3,224	92%
103FH088	3,500	3,016	86%	3,185	91%	3,134	90%	3,085	88%
103FH128	3,000	2,438	81%	2,348	78%	2,347	78%	2,313	77%
103FH141	3,500	3,309	95%	3,275	94%	3,316	95%	3,242	93%
103FH145	3,500	2,817	80%	2,917	83%	2,878	82%	2,838	81%
104FH002	3,500	3,022	86%	2,867	82%	2,842	81%	2,827	81%
104FH004	3,500	3,038	87%	2,888	83%	2,863	82%	2,847	81%
104FH021	3,500	3,211	92%	3,061	87%	3,035	87%	3,018	86%
104FH035	1,500	1,128	75%	1,101	73%	1,088	73%	1,081	72%
104FH036	3,000	2,948	98%	3,192	100%	3,154	100%	3,121	100%
104FH043	2,500	2,018	81%	2,122	85%	2,093	84%	2,070	83%
104FH044	2,500	2,197	88%	2,429	97%	2,392	96%	2,361	94%
104FH045	1,500	1,143	76%	1,216	81%	1,197	80%	1,186	79%
104FH047	1,500	1,271	85%	4,352	100%	4,264	100%	4,198	100%
104FH050	3,000	2,425	81%	3,608	100%	3,396	100%	3,280	100%
104FH057	3,500	2,824	81%	3,146	90%	3,046	87%	2,991	85%

104FH058	1,500	1,204	80%	1,288	86%	1,268	85%	1,256	84%
104FH103	3,500	2,734	78%	3,007	86%	2,919	83%	2,870	82%
104FH104	3,500	2,858	82%	3,174	91%	3,077	88%	3,024	86%
105FH020	3,000	2,311	77%	2,648	88%	2,591	86%	2,555	85%
105FH032	3,500	3,107	89%	3,774	100%	3,698	100%	3,648	100%
105FH033	1,500	1,162	77%	2,304	100%	2,250	100%	2,218	100%
105FH036	1,500	1,171	78%	2,459	100%	2,403	100%	2,369	100%
105FH037	3,500	3,215	92%	3,976	100%	3,892	100%	3,838	100%
105FH044	1,500	1,472	98%	1,672	100%	1,636	100%	1,616	100%
105FH058	3,500	2,887	82%	3,405	97%	3,330	95%	3,287	94%
105FH071	1,500	1,394	93%	1,556	100%	1,517	100%	1,486	99%
105FH095	3,000	2,637	88%	3,938	100%	3,712	100%	3,587	100%
105FH096	3,000	2,662	89%	3,874	100%	3,668	100%	3,551	100%
105FH098	3,000	2,531	84%	3,479	100%	3,324	100%	3,224	100%
107FH017	3,500	3,328	95%	3,637	100%	3,644	100%	3,648	100%
107FH030	3,500	3,279	94%	3,641	100%	3,645	100%	3,643	100%
108FH003	3,500	2,900	83%	4,025	100%	4,049	100%	4,077	100%
108FH022	3,500	2,859	82%	2,912	83%	2,925	84%	2,938	84%
108FH025	3,500	2,763	79%	2,809	80%	2,822	81%	2,834	81%
108FH036	3,500	3,482	99%	3,709	100%	3,723	100%	3,750	100%
108FH044	3,500	2,992	85%	3,128	89%	3,139	90%	3,159	90%
108FH110	3,500	2,651	76%	3,458	99%	3,475	99%	3,491	100%
108FH111	3,500	2,678	77%	5,438	100%	5,492	100%	5,561	100%
108FH112	3,500	3,088	88%	5,279	100%	5,325	100%	5,388	100%
117FH001	3,500	3,011	86%	4,521	100%	4,192	100%	4,049	100%
117FH003	3,500	2,648	76%	3,669	100%	3,342	95%	3,239	93%
117FH004	3,500	2,707	77%	3,720	100%	3,420	98%	3,327	95%
118FH007	1,500	1,369	91%	1,578	100%	1,487	99%	1,441	96%
118FH010	1,500	1,375	92%	1,555	100%	1,460	97%	1,406	94%
118FH027	3,000	2,364	79%	3,184	100%	2,919	97%	2,812	94%
118FH028	3,000	2,405	80%	3,034	100%	2,829	94%	2,717	91%
118FH031	3,000	2,766	92%	3,806	100%	3,549	100%	3,456	100%
118FH036	1,500	1,447	96%	1,699	100%	1,582	100%	1,515	100%
118FH052	1,500	1,433	96%	1,936	100%	1,759	100%	1,663	100%
118FH053	1,500	1,347	90%	1,970	100%	1,737	100%	1,596	100%
118FH054	1,500	1,482	99%	2,092	100%	1,894	100%	1,784	100%
118FH060	1,500	1,429	95%	2,747	100%	2,361	100%	2,159	100%
118FH066	3,000	2,270	76%	3,163	100%	2,862	95%	2,661	89%
118FH067	3,000	2,263	75%	2,700	90%	2,554	85%	2,461	82%
118FH068	3,000	2,286	76%	2,895	96%	2,689	90%	2,550	85%
118FH069	3,000	2,671	89%	3,697	100%	3,399	100%	3,238	100%
118FH070	2,500	2,336	93%	3,153	100%	2,889	100%	2,728	100%
118FH071	2,500	2,191	88%	2,905	100%	2,660	100%	2,508	100%
118FH072	2,500	1,981	79%	2,514	100%	2,313	93%	2,183	87%

118FH073	2,500	2,469	99%	3,415	100%	3,123	100%	2,947	100%
118FH074	3,000	2,368	79%	3,367	100%	3,044	100%	2,835	94%
118FH075	3,000	2,279	76%	3,172	100%	2,873	96%	2,677	89%
118FH083	3,000	2,347	78%	3,669	100%	3,299	100%	3,116	100%
118FH090	3,000	2,929	98%	6,728	100%	6,211	100%	6,022	100%
118FH119	3,000	2,835	94%	3,718	100%	3,467	100%	3,343	100%
129FH001	3,500	2,692	77%	6,483	100%	6,380	100%	6,230	100%
129FH002	3,500	2,953	84%	9,621	100%	9,421	100%	9,100	100%
129FH003	3,500	3,110	89%	10,450	100%	10,234	100%	9,873	100%
129FH004	3,500	2,936	84%	9,397	100%	9,204	100%	8,900	100%
130FH007	3,500	2,650	76%	8,165	100%	7,979	100%	7,703	100%
143FH001	3,500	2,988	85%	7,493	100%	7,384	100%	7,205	100%
143FH002	3,500	3,158	90%	8,678	100%	8,526	100%	8,284	100%
143FH003	3,500	3,070	88%	6,775	100%	6,675	100%	6,531	100%
143FH004	3,500	3,263	93%	7,850	100%	7,728	100%	7,529	100%
143FH005	3,500	3,221	92%	6,448	100%	6,359	100%	6,222	100%
143FH006	3,500	3,488	100%	7,770	100%	7,644	100%	7,450	100%
143FH007	3,500	3,442	98%	7,268	100%	7,156	100%	6,984	100%
143FH008	3,500	3,238	93%	6,084	100%	5,996	100%	5,867	100%
143FH009	3,500	3,346	96%	6,150	100%	6,059	100%	5,925	100%
157FH010	3,500	2,685	77%	4,641	100%	4,487	100%	4,200	100%
157FH012	3,500	3,048	87%	4,284	100%	4,175	100%	3,975	100%
157FH016	3,500	2,820	81%	3,958	100%	3,887	100%	3,751	100%
		2013 <i>A</i>	Available	Fire Flow >	100% of F	Fire Flow Go	al		
033FH001	1,500	2,806	100%	2,777	100%	2,764	100%	2,736	100%
033FH002	1,500	2,795	100%	2,765	100%	2,752	100%	2,724	100%
033FH003	1,500	2,697	100%	2,664	100%	2,652	100%	2,626	100%
033FH004	1,500	2,809	100%	2,779	100%	2,766	100%	2,738	100%
033FH005	1,500	2,863	100%	2,836	100%	2,822	100%	2,795	100%
033FH006	1,500	2,560	100%	2,560	100%	2,548	100%	2,523	100%
033FH007	1,500	2,671	100%	2,638	100%	2,625	100%	2,598	100%
033FH008	1,500	2,670	100%	2,637	100%	2,624	100%	2,597	100%
033FH009	1,500	2,549	100%	2,549	100%	2,546	100%	2,519	100%
033FH010	1,500	2,635	100%	2,599	100%	2,587	100%	2,560	100%
033FH011	1,500	2,643	100%	2,608	100%	2,595	100%	2,568	100%
033FH012	1,500	2,619	100%	2,583	100%	2,571	100%	2,544	100%
033FH013	1,500	2,709	100%	2,676	100%	2,662	100%	2,635	100%
033FH014	1,500	2,721	100%	2,689	100%	2,677	100%	2,650	100%
033FH015	1,500	2,696	100%	2,662	100%	2,649	100%	2,621	100%
033FH016	1,500	2,481	100%	2,481	100%	2,481	100%	2,481	100%
033FH017	1,500	2,746	100%	2,715	100%	2,702	100%	2,674	100%
033FH018	1,500	2,726	100%	2,693	100%	2,680	100%	2,653	100%
	<i>,</i>								
033FH019	1,500	2,638	100%	2,605	100%	2,593	100%	2,567	100%

047FH002	1,500	2,388	100%	2,568	100%	2,547	100%	2,501	100%
047FH003	1,500	2,270	100%	2,449	100%	2,429	100%	2,384	100%
047FH005	1,500	2,267	100%	2,449	100%	2,429	100%	2,383	100%
047FH006	1,500	2,421	100%	2,605	100%	2,584	100%	2,536	100%
047FH007	1,500	2,379	100%	2,561	100%	2,541	100%	2,494	100%
047FH010	1,500	2,432	100%	2,615	100%	2,594	100%	2,546	100%
047FH011	1,500	2,439	100%	2,626	100%	2,604	100%	2,556	100%
047FH012	1,500	1,897	100%	1,897	100%	1,897	100%	1,896	100%
047FH014	1,500	2,771	100%	2,741	100%	2,728	100%	2,700	100%
047FH015	1,500	2,814	100%	2,785	100%	2,772	100%	2,744	100%
047FH016	1,500	2,825	100%	2,797	100%	2,784	100%	2,756	100%
047FH017	1,500	2,783	100%	2,753	100%	2,740	100%	2,712	100%
047FH018	1,500	2,749	100%	2,718	100%	2,704	100%	2,676	100%
047FH019	1,500	2,792	100%	2,762	100%	2,749	100%	2,722	100%
047FH020	1,500	2,832	100%	2,804	100%	2,790	100%	2,762	100%
047FH021	1,500	2,859	100%	2,832	100%	2,819	100%	2,790	100%
047FH022	1,500	2,811	100%	2,783	100%	2,770	100%	2,743	100%
047FH023	1,500	2,851	100%	2,824	100%	2,810	100%	2,782	100%
047FH024	1,500	2,896	100%	2,870	100%	2,856	100%	2,828	100%
047FH025	1,500	2,872	100%	2,845	100%	2,832	100%	2,804	100%
047FH026	1,500	2,872	100%	2,846	100%	2,833	100%	2,806	100%
047FH027	1,500	1,818	100%	1,818	100%	1,818	100%	1,818	100%
047FH028	1,500	2,853	100%	2,826	100%	2,813	100%	2,785	100%
047FH029	1,500	2,909	100%	2,884	100%	2,871	100%	2,843	100%
047FH030	1,500	3,009	100%	2,989	100%	2,975	100%	2,946	100%
047FH031	1,500	2,933	100%	2,910	100%	2,897	100%	2,869	100%
047FH032	1,500	2,931	100%	2,908	100%	2,895	100%	2,868	100%
047FH033	1,500	2,906	100%	2,881	100%	2,868	100%	2,839	100%
047FH034	1,500	2,894	100%	2,869	100%	2,856	100%	2,830	100%
047FH035	1,500	3,028	100%	3,009	100%	2,996	100%	2,967	100%
047FH036	1,500	2,897	100%	2,872	100%	2,859	100%	2,831	100%
047FH037	1,500	2,920	100%	2,897	100%	2,885	100%	2,859	100%
047FH038	1,500	2,925	100%	2,902	100%	2,889	100%	2,861	100%
047FH039	1,500	2,829	100%	2,802	100%	2,789	100%	2,763	100%
047FH040	1,500	2,674	100%	2,644	100%	2,633	100%	2,609	100%
047FH041	1,500	2,814	100%	2,787	100%	2,775	100%	2,750	100%
047FH042	1,500	2,816	100%	2,787	100%	2,774	100%	2,747	100%
047FH043	1,500	2,198	100%	2,499	100%	2,473	100%	2,420	100%
047FH044	1,500	2,787	100%	2,759	100%	2,747	100%	2,721	100%
047FH045	1,500	2,697	100%	2,666	100%	2,653	100%	2,627	100%
047FH046	1,500	1,750	100%	1,774	100%	1,774	100%	1,773	100%
047FH047	1,500	2,501	100%	2,809	100%	2,783	100%	2,730	100%
047FH048	1,500	1,951	100%	2,071	100%	2,071	100%	2,071	100%
047FH049	1,500	2,034	100%	2,270	100%	2,270	100%	2,254	100%

047FH050	1,500	2,619	100%	2,585	100%	2,573	100%	2,548	100%
047FH053	1,500	2,133	100%	2,983	100%	2,892	100%	2,701	100%
047FH055	1,500	2,252	100%	3,405	100%	3,281	100%	3,022	100%
047FH056	1,500	2,823	100%	3,694	100%	3,591	100%	3,378	100%
047FH058	1,500	2,741	100%	3,661	100%	3,555	100%	3,333	100%
047FH059	1,500	2,801	100%	3,558	100%	3,468	100%	3,281	100%
047FH060	1,500	1,865	100%	2,384	100%	2,329	100%	2,213	100%
047FH061	1,500	3,760	100%	4,950	100%	4,802	100%	4,495	100%
047FH062	1,500	2,709	100%	3,420	100%	3,338	100%	3,166	100%
047FH063	1,500	2,820	100%	3,583	100%	3,493	100%	3,306	100%
047FH064	1,500	2,822	100%	3,672	100%	3,572	100%	3,364	100%
047FH066	1,500	3,312	100%	4,074	100%	3,976	100%	3,774	100%
047FH067	2,500	4,426	100%	5,718	100%	5,564	100%	5,243	100%
047FH068	3,500	4,100	100%	5,273	100%	5,131	100%	4,837	100%
047FH069	1,500	1,530	100%	1,872	100%	1,835	100%	1,759	100%
047FH070	1,500	3,229	100%	4,046	100%	3,944	100%	3,733	100%
047FH071	1,500	3,861	100%	4,737	100%	4,626	100%	4,397	100%
047FH072	3,500	4,206	100%	5,359	100%	5,220	100%	4,933	100%
047FH073	1,500	1,559	100%	1,897	100%	1,861	100%	1,784	100%
047FH074	3,500	4,191	100%	5,284	100%	5,152	100%	4,880	100%
047FH075	2,500	4,999	100%	6,461	100%	6,294	100%	5,943	100%
047FH076	1,500	3,246	100%	4,017	100%	3,921	100%	3,721	100%
047FH077	1,500	3,810	100%	4,648	100%	4,542	100%	4,323	100%
047FH078	1,500	2,014	100%	2,391	100%	2,349	100%	2,262	100%
047FH079	3,000	5,320	100%	6,876	100%	6,704	100%	6,339	100%
047FH080	1,500	3,932	100%	4,774	100%	4,667	100%	4,448	100%
047FH081	2,500	4,888	100%	6,293	100%	6,133	100%	5,796	100%
047FH082	1,500	3,378	100%	4,152	100%	4,053	100%	3,849	100%
047FH083	2,500	4,486	100%	5,633	100%	5,499	100%	5,219	100%
047FH085	1,500	2,244	100%	2,550	100%	2,523	100%	2,470	100%
047FH086	1,500	2,255	100%	2,513	100%	2,491	100%	2,446	100%
047FH087	1,500	2,370	100%	2,370	100%	2,370	100%	2,370	100%
047FH088	1,500	1,867	100%	1,867	100%	1,867	100%	1,867	100%
047FH089	1,500	2,319	100%	2,626	100%	2,600	100%	2,548	100%
047FH090	1,500	2,044	100%	2,189	100%	2,189	100%	2,188	100%
047FH091	1,500	2,400	100%	2,673	100%	2,650	100%	2,602	100%
047FH092	1,500	1,858	100%	1,942	100%	1,942	100%	1,942	100%
047FH093	1,500	2,694	100%	2,986	100%	2,962	100%	2,913	100%
047FH094	1,500	2,032	100%	2,386	100%	2,368	100%	2,311	100%
047FH095	1,500	2,209	100%	2,452	100%	2,431	100%	2,388	100%
047FH096	1,500	2,277	100%	2,628	100%	2,604	100%	2,554	100%
047FH097	1,500	1,627	100%	1,643	100%	1,643	100%	1,643	100%
047FH098	1,500	1,580	100%	1,593	100%	1,593	100%	1,593	100%
047FH100	1,500	1,903	100%	2,080	100%	2,080	100%	2,080	100%

047FH102	1,500	3,313	100%	3,665	100%	3,639	100%	3,585	100%
047FH103	1,500	1,688	100%	1,733	100%	1,733	100%	1,733	100%
047FH104	1,500	1,577	100%	1,593	100%	1,593	100%	1,593	100%
047FH105	1,500	1,822	100%	2,030	100%	2,030	100%	2,029	100%
047FH106	1,500	1,573	100%	2,569	100%	2,549	100%	2,509	100%
047FH107	1,500	1,676	100%	2,769	100%	2,747	100%	2,702	100%
047FH108	1,500	1,734	100%	2,021	100%	2,021	100%	2,021	100%
047FH109	1,500	2,612	100%	2,871	100%	2,849	100%	2,804	100%
047FH111	1,500	1,763	100%	2,112	100%	2,074	100%	1,994	100%
047FH112	1,500	1,985	100%	2,145	100%	2,117	100%	2,061	100%
047FH113	3,500	6,267	100%	6,706	100%	6,595	100%	6,362	100%
047FH120	1,500	2,728	100%	2,695	100%	2,681	100%	2,653	100%
047FH121	1,500	2,700	100%	2,667	100%	2,654	100%	2,627	100%
047FH122	1,500	2,691	100%	2,657	100%	2,644	100%	2,617	100%
047FH123	1,500	2,161	100%	2,418	100%	2,396	100%	2,350	100%
048FH005	1,500	2,377	100%	2,562	100%	2,540	100%	2,492	100%
048FH009	1,500	2,252	100%	2,446	100%	2,424	100%	2,374	100%
048FH010	1,500	2,194	100%	2,399	100%	2,376	100%	2,324	100%
048FH012	1,500	2,230	100%	2,438	100%	2,415	100%	2,362	100%
048FH013	1,500	2,220	100%	2,426	100%	2,403	100%	2,350	100%
048FH020	1,500	2,228	100%	2,436	100%	2,412	100%	2,359	100%
048FH021	1,500	2,250	100%	2,452	100%	2,429	100%	2,378	100%
048FH022	1,500	2,376	100%	2,569	100%	2,547	100%	2,496	100%
048FH023	1,500	2,318	100%	2,518	100%	2,496	100%	2,444	100%
048FH024	1,500	2,322	100%	2,518	100%	2,496	100%	2,445	100%
048FH025	1,500	1,825	100%	1,825	100%	1,825	100%	1,824	100%
048FH026	1,500	2,338	100%	2,528	100%	2,506	100%	2,457	100%
048FH027	1,500	2,535	100%	2,701	100%	2,682	100%	2,637	100%
048FH028	1,500	2,607	100%	3,118	100%	3,010	100%	2,736	100%
048FH029	1,500	2,271	100%	2,586	100%	2,436	100%	2,388	100%
048FH030	1,500	3,144	100%	3,802	100%	3,723	100%	3,548	100%
048FH031	3,000	3,397	100%	3,973	100%	3,901	100%	3,744	100%
048FH032	3,000	3,770	100%	4,713	100%	4,597	100%	4,348	100%
048FH033	1,500	1,554	100%	2,565	100%	2,455	100%	2,221	100%
048FH034	1,500	1,926	100%	2,399	100%	2,248	100%	2,231	100%
048FH035	1,500	1,725	100%	1,896	100%	1,896	100%	1,894	100%
048FH036	1,500	1,962	100%	2,704	100%	2,617	100%	2,432	100%
048FH037	1,500	1,766	100%	1,934	100%	1,934	100%	1,933	100%
048FH038	1,500	2,235	100%	2,819	100%	2,747	100%	2,594	100%
048FH039	1,500	1,546	100%	1,683	100%	1,683	100%	1,682	100%
048FH040	1,500	2,980	100%	3,701	100%	3,599	100%	3,387	100%
048FH041	1,500	2,033	100%	2,877	100%	2,776	100%	2,562	100%
048FH042	1,500	2,579	100%	3,311	100%	3,215	100%	3,014	100%
048FH043	1,500	1,816	100%	2,649	100%	2,552	100%	2,343	100%

048FH044	1,500	2,322	100%	3,091	100%	2,995	100%	2,793	100%
048FH045	1,500	2,174	100%	2,718	100%	2,651	100%	2,510	100%
048FH046	1,500	2,335	100%	3,261	100%	3,143	100%	2,895	100%
048FH049	1,500	3,223	100%	3,960	100%	3,854	100%	3,632	100%
048FH051	3,500	3,666	100%	4,513	100%	4,394	100%	4,146	100%
048FH052	2,500	4,443	100%	5,679	100%	5,515	100%	5,173	100%
048FH053	3,000	3,819	100%	4,833	100%	4,690	100%	4,392	100%
048FH054	3,000	3,727	100%	4,733	100%	4,589	100%	4,287	100%
048FH057	1,500	1,730	100%	1,735	100%	1,735	100%	1,734	100%
048FH058	1,500	1,527	100%	1,530	100%	1,530	100%	1,529	100%
048FH059	1,500	1,721	100%	1,725	100%	1,725	100%	1,724	100%
048FH060	1,500	2,139	100%	2,279	100%	2,247	100%	2,244	100%
048FH061	1,500	1,574	100%	1,578	100%	1,578	100%	1,577	100%
048FH062	1,500	1,744	100%	1,796	100%	1,795	100%	1,794	100%
048FH063	1,500	3,226	100%	4,395	100%	4,216	100%	3,840	100%
048FH064	2,500	3,340	100%	4,200	100%	4,063	100%	3,775	100%
048FH065	750	2,557	100%	3,454	100%	3,323	100%	3,045	100%
048FH066	2,500	4,439	100%	5,906	100%	5,699	100%	5,264	100%
048FH067	2,500	4,040	100%	5,144	100%	4,977	100%	4,626	100%
048FH070	1,500	2,298	100%	2,489	100%	2,467	100%	2,418	100%
048FH072	1,500	1,545	100%	1,632	100%	1,574	100%	1,470	98%
048FH073	1,500	1,543	100%	1,628	100%	1,574	100%	1,469	98%
048FH075	1,500	1,625	100%	2,151	100%	2,040	100%	1,788	100%
048FH076	1,500	1,591	100%	1,923	100%	1,817	100%	1,571	100%
048FH077	1,500	2,398	100%	2,856	100%	2,763	100%	2,565	100%
048FH078	1,500	1,609	100%	1,997	100%	1,900	100%	1,682	100%
048FH079	1,500	2,008	100%	2,598	100%	2,495	100%	2,273	100%
048FH081	1,500	1,642	100%	2,138	100%	2,034	100%	1,804	100%
048FH082	1,500	1,608	100%	1,942	100%	1,838	100%	1,602	100%
048FH083	1,500	1,599	100%	1,856	100%	1,759	100%	1,540	100%
048FH084	1,500	1,595	100%	1,851	100%	1,747	100%	1,516	100%
048FH085	1,500	1,563	100%	1,708	100%	1,590	100%	1,487	99%
048FH086	1,500	1,521	100%	1,600	100%	1,550	100%	1,447	96%
048FH087	1,500	1,550	100%	1,622	100%	1,572	100%	1,471	98%
048FH090	1,500	1,588	100%	1,780	100%	1,687	100%	1,507	100%
048FH091	1,500	1,518	100%	1,589	100%	1,540	100%	1,437	96%
048FH110	1,500	1,631	100%	2,026	100%	1,926	100%	1,706	100%
048FH111	2,500	4,231	100%	5,773	100%	5,534	100%	5,034	100%
048FH112	1,500	2,650	100%	2,914	100%	2,814	100%	2,753	100%
048FH114	1,500	1,931	100%	3,292	100%	3,123	100%	2,761	100%
048FH124	1,500	1,504	100%	1,567	100%	1,522	100%	1,428	95%
048FH125	1,500	1,502	100%	1,565	100%	1,519	100%	1,425	95%
048FH127	1,500	1,534	100%	1,595	100%	1,550	100%	1,456	97%
048FH133	1,500	2,247	100%	2,438	100%	2,416	100%	2,367	100%

048FH135	3,000	3,706	100%	4,369	100%	4,292	100%	4,125	100%
048FH136	2,500	2,523	100%	2,691	100%	2,672	100%	2,626	100%
048FH137	2,500	2,594	100%	2,782	100%	2,747	100%	2,700	100%
049FH003	500	2,829	100%	3,495	100%	3,288	100%	2,878	100%
049FH007	1,500	1,574	100%	1,649	100%	1,587	100%	1,490	99%
049FH008	1,500	1,554	100%	1,615	100%	1,568	100%	1,471	98%
049FH009	1,500	1,593	100%	1,706	100%	1,638	100%	1,510	100%
049FH010	1,500	1,554	100%	1,612	100%	1,568	100%	1,476	98%
049FH011	1,500	1,558	100%	1,618	100%	1,573	100%	1,478	99%
049FH012	1,500	1,560	100%	1,621	100%	1,575	100%	1,480	99%
049FH013	1,500	1,560	100%	1,620	100%	1,573	100%	1,476	98%
049FH019	1,500	1,517	100%	1,580	100%	1,538	100%	1,453	97%
050FH001	500	2,536	100%	2,928	100%	2,711	100%	2,296	100%
050FH002	500	2,034	100%	2,592	100%	2,341	100%	1,855	100%
050FH003	500	2,273	100%	2,808	100%	2,548	100%	2,050	100%
050FH004	500	3,017	100%	3,523	100%	3,229	100%	2,685	100%
050FH005	500	1,962	100%	2,468	100%	2,244	100%	1,808	100%
050FH006	500	1,378	100%	2,143	100%	1,892	100%	1,388	100%
050FH007	500	2,965	100%	3,467	100%	3,185	100%	2,658	100%
050FH008	500	1,726	100%	2,134	100%	1,971	100%	1,646	100%
050FH009	500	755	100%	1,426	100%	1,262	100%	904	100%
050FH010	500	2,663	100%	3,124	100%	2,883	100%	2,421	100%
050FH011	500	2,414	100%	2,944	100%	2,695	100%	2,209	100%
050FH012	500	1,896	100%	2,680	100%	2,380	100%	1,799	100%
050FH014	500	2,783	100%	3,369	100%	3,080	100%	2,530	100%
050FH015	500	1,822	100%	2,515	100%	2,264	100%	1,767	100%
050FH016	500	1,562	100%	1,993	100%	1,858	100%	1,586	100%
050FH017	500	1,841	100%	2,494	100%	2,265	100%	1,809	100%
050FH018	500	2,108	100%	2,612	100%	2,413	100%	2,019	100%
050FH021	500	3,079	100%	3,530	100%	3,270	100%	2,783	100%
050FH022	500	2,431	100%	2,792	100%	2,601	100%	2,232	100%
050FH023	500	2,248	100%	2,622	100%	2,439	100%	2,082	100%
050FH024	500	1,918	100%	2,279	100%	2,125	100%	1,819	100%
050FH025	3,000	3,312	100%	3,854	100%	3,492	100%	2,852	95%
050FH026	3,000	3,247	100%	3,780	100%	3,437	100%	2,821	94%
050FH027	500	3,076	100%	3,730	100%	3,460	100%	2,950	100%
050FH028	1,500	2,580	100%	3,085	100%	2,792	100%	2,248	100%
060FH002	3,500	3,942	100%	4,079	100%	4,010	100%	3,877	100%
060FH003	3,500	3,518	100%	3,480	99%	3,431	98%	3,336	95%
061FH001	3,000	4,396	100%	5,509	100%	5,377	100%	5,103	100%
061FH002	3,000	5,028	100%	6,760	100%	6,589	100%	6,227	100%
061FH003	2,500	5,464	100%	7,462	100%	7,267	100%	6,848	100%
061FH004	2,500	2,750	100%	3,344	100%	3,275	100%	3,132	100%
061FH006	3,000	3,878	100%	4,517	100%	4,426	100%	4,241	100%

061FH007	3,000	4,792	100%	5,732	100%	5,610	100%	5,357	100%
061FH008	3,000	3,958	100%	4,628	100%	4,531	100%	4,334	100%
061FH010	2,500	3,417	100%	4,042	100%	3,959	100%	3,789	100%
061FH013	3,000	3,767	100%	4,386	100%	4,304	100%	4,135	100%
061FH015	3,000	3,722	100%	4,287	100%	4,210	100%	4,052	100%
061FH017	3,000	3,719	100%	4,259	100%	4,186	100%	4,037	100%
061FH018	2,500	3,585	100%	4,024	100%	3,958	100%	3,823	100%
061FH021	3,000	4,388	100%	4,996	100%	4,914	100%	4,746	100%
061FH023	1,500	3,325	100%	3,696	100%	3,636	100%	3,515	100%
061FH024	1,500	2,094	100%	2,375	100%	2,334	100%	2,250	100%
061FH031	1,500	3,091	100%	3,456	100%	3,397	100%	3,275	100%
061FH032	1,500	2,159	100%	2,482	100%	2,434	100%	2,334	100%
061FH038	1,500	2,418	100%	2,748	100%	2,696	100%	2,588	100%
061FH042	1,500	2,812	100%	3,175	100%	3,114	100%	2,991	100%
061FH047	1,500	2,363	100%	2,639	100%	2,600	100%	2,522	100%
061FH048	1,500	2,250	100%	2,417	100%	2,384	100%	2,319	100%
061FH049	3,500	8,512	100%	8,727	100%	8,570	100%	8,227	100%
061FH050	1,500	2,138	100%	2,261	100%	2,235	100%	2,185	100%
061FH079	3,000	3,068	100%	2,394	80%	2,344	78%	2,283	76%
061FH081	3,000	3,610	100%	2,895	96%	2,835	95%	2,760	92%
061FH086	3,000	5,491	100%	7,192	100%	7,008	100%	6,614	100%
061FH087	1,500	5,213	100%	5,395	100%	5,311	100%	5,144	100%
062FH001	3,000	3,569	100%	4,291	100%	4,187	100%	3,970	100%
062FH002	2,500	3,594	100%	4,451	100%	4,329	100%	4,075	100%
062FH003	2,500	3,938	100%	4,946	100%	4,805	100%	4,514	100%
062FH004	2,500	4,933	100%	6,146	100%	5,989	100%	5,656	100%
062FH007	1,500	3,621	100%	4,303	100%	4,202	100%	3,991	100%
062FH011	1,500	3,229	100%	3,732	100%	3,653	100%	3,488	100%
062FH012	1,500	4,483	100%	5,334	100%	5,216	100%	4,969	100%
062FH014	1,500	2,339	100%	2,743	100%	2,688	100%	2,570	100%
062FH015	1,500	3,513	100%	4,041	100%	3,958	100%	3,787	100%
062FH016	3,500	3,621	100%	4,147	100%	4,066	100%	3,895	100%
062FH018	1,500	4,163	100%	4,861	100%	4,759	100%	4,546	100%
062FH019	1,500	3,898	100%	4,523	100%	4,427	100%	4,230	100%
062FH020	1,500	1,612	100%	2,238	100%	2,200	100%	2,119	100%
062FH021	1,500	4,072	100%	4,644	100%	4,558	100%	4,379	100%
062FH022	1,500	3,772	100%	4,271	100%	4,192	100%	4,028	100%
062FH024	2,500	2,971	100%	3,336	100%	3,275	100%	3,149	100%
062FH025	2,500	2,782	100%	3,151	100%	3,092	100%	2,968	100%
062FH026	2,500	2,549	100%	2,894	100%	2,841	100%	2,731	100%
062FH027	1,500	3,489	100%	3,899	100%	3,831	100%	3,690	100%
062FH029	1,500	1,737	100%	1,991	100%	1,959	100%	1,891	100%
062FH030	1,500	3,039	100%	3,386	100%	3,328	100%	3,208	100%
062FH035	1,500	3,580	100%	3,919	100%	3,858	100%	3,734	100%

062FH036	3,000	4,157	100%	4,728	100%	4,655	100%	4,502	100%
062FH038	1,500	2,404	100%	2,560	100%	2,526	100%	2,456	100%
062FH039	3,000	5,154	100%	5,966	100%	5,865	100%	5,647	100%
062FH040	1,500	4,236	100%	5,649	100%	5,443	100%	5,012	100%
062FH041	1,500	3,319	100%	4,142	100%	4,015	100%	3,749	100%
062FH042	1,500	4,668	100%	5,965	100%	5,784	100%	5,402	100%
062FH043	2,500	4,366	100%	5,464	100%	5,308	100%	4,980	100%
062FH044	1,500	3,318	100%	3,986	100%	3,879	100%	3,656	100%
062FH045	1,500	4,573	100%	5,725	100%	5,565	100%	5,228	100%
062FH046	1,500	4,975	100%	6,278	100%	6,103	100%	5,731	100%
062FH047	3,500	6,056	100%	7,792	100%	7,563	100%	7,072	100%
062FH048	3,000	4,192	100%	5,105	100%	4,974	100%	4,700	100%
062FH049	3,000	4,272	100%	5,242	100%	5,106	100%	4,820	100%
062FH050	1,500	3,720	100%	4,487	100%	4,369	100%	4,120	100%
062FH051	3,500	4,095	100%	4,947	100%	4,823	100%	4,565	100%
062FH052	1,500	3,503	100%	4,193	100%	4,086	100%	3,861	100%
062FH053	3,000	3,952	100%	4,821	100%	4,703	100%	4,454	100%
062FH054	1,500	4,154	100%	5,651	100%	5,461	100%	5,064	100%
062FH055	2,500	3,592	100%	4,245	100%	4,147	100%	3,942	100%
062FH056	1,500	2,420	100%	2,871	100%	2,805	100%	2,664	100%
062FH057	3,000	4,511	100%	5,468	100%	5,339	100%	5,066	100%
062FH058	1,500	4,398	100%	5,361	100%	5,225	100%	4,939	100%
062FH059	3,000	4,702	100%	5,963	100%	5,814	100%	5,500	100%
062FH060	2,500	2,716	100%	3,139	100%	3,076	100%	2,944	100%
062FH061	1,500	4,070	100%	5,947	100%	5,752	100%	5,344	100%
062FH062	1,500	4,396	100%	5,415	100%	5,274	100%	4,977	100%
062FH063	2,500	4,094	100%	4,803	100%	4,699	100%	4,482	100%
062FH064	1,500	2,520	100%	2,961	100%	2,902	100%	2,778	100%
062FH065	1,500	3,631	100%	5,169	100%	5,052	100%	4,806	100%
062FH066	1,500	3,082	100%	3,639	100%	3,558	100%	3,386	100%
062FH067	2,500	2,611	100%	2,973	100%	2,918	100%	2,802	100%
062FH068	1,500	2,442	100%	2,796	100%	2,744	100%	2,633	100%
062FH069	1,500	2,559	100%	2,971	100%	2,914	100%	2,792	100%
062FH070	1,500	3,041	100%	3,567	100%	3,490	100%	3,327	100%
062FH071	1,500	3,697	100%	4,743	100%	4,598	100%	4,302	100%
062FH072	1,500	1,822	100%	2,184	100%	2,136	100%	2,034	100%
062FH073	2,500	2,553	100%	2,888	100%	2,836	100%	2,728	100%
062FH074	1,500	1,686	100%	1,943	100%	1,908	100%	1,836	100%
062FH075	1,500	2,161	100%	2,553	100%	2,499	100%	2,383	100%
062FH076	1,500	2,002	100%	2,310	100%	2,268	100%	2,179	100%
062FH077	1,500	3,676	100%	4,647	100%	4,511	100%	4,236	100%
062FH078	1,500	2,050	100%	2,419	100%	2,372	100%	2,273	100%
062FH079	1,500	2,136	100%	2,588	100%	2,527	100%	2,397	100%
062FH080	1,500	1,765	100%	2,217	100%	2,170	100%	2,070	100%

062FH083	1,500	3,363	100%	3,645	100%	3,592	100%	3,485	100%
062FH084	3,000	3,074	100%	3,401	100%	3,339	100%	3,213	100%
062FH085	1,500	2,902	100%	3,133	100%	3,090	100%	3,000	100%
062FH086	3,000	3,617	100%	3,964	100%	3,898	100%	3,766	100%
062FH087	1,500	2,200	100%	2,362	100%	2,325	100%	2,249	100%
062FH089	3,000	3,297	100%	3,653	100%	3,585	100%	3,449	100%
062FH090	1,500	2,425	100%	2,626	100%	2,581	100%	2,490	100%
062FH091	1,500	2,058	100%	2,235	100%	2,194	100%	2,112	100%
062FH094	1,500	2,284	100%	2,394	100%	2,365	100%	2,306	100%
062FH096	1,500	1,612	100%	1,691	100%	1,657	100%	1,589	100%
062FH097	1,500	1,748	100%	1,766	100%	1,746	100%	1,709	100%
062FH117	1,500	1,831	100%	2,229	100%	2,186	100%	2,095	100%
062FH119	1,500	2,357	100%	2,894	100%	2,822	100%	2,672	100%
062FH120	2,500	3,090	100%	3,894	100%	3,794	100%	3,586	100%
062FH121	1,500	2,253	100%	2,755	100%	2,692	100%	2,558	100%
062FH122	1,500	1,597	100%	2,624	100%	2,565	100%	2,441	100%
062FH124	1,500	3,089	100%	3,940	100%	3,840	100%	3,634	100%
062FH126	1,500	3,588	100%	4,864	100%	4,738	100%	4,478	100%
062FH127	1,500	2,563	100%	3,273	100%	3,194	100%	3,030	100%
062FH129	1,500	3,677	100%	5,155	100%	5,012	100%	4,721	100%
062FH131	1,500	2,565	100%	3,150	100%	3,082	100%	2,939	100%
062FH132	1,500	2,537	100%	3,154	100%	3,083	100%	2,935	100%
062FH133	1,500	2,381	100%	3,038	100%	2,966	100%	2,815	100%
062FH134	1,500	3,733	100%	5,111	100%	4,987	100%	4,733	100%
062FH135	1,500	2,695	100%	3,355	100%	3,284	100%	3,137	100%
062FH138	1,500	3,192	100%	4,104	100%	3,990	100%	3,756	100%
062FH141	3,500	4,489	100%	5,760	100%	5,571	100%	5,172	100%
062FH143	1,500	3,246	100%	3,902	100%	3,797	100%	3,573	100%
062FH144	1,500	1,954	100%	2,294	100%	2,250	100%	2,156	100%
062FH145	1,500	2,189	100%	2,558	100%	2,508	100%	2,403	100%
062FH146	1,500	2,506	100%	2,898	100%	2,842	100%	2,725	100%
062FH147	3,500	3,802	100%	4,610	100%	4,494	100%	4,252	100%
062FH149	3,500	3,698	100%	4,532	100%	4,411	100%	4,159	100%
062FH150	3,500	3,930	100%	4,822	100%	4,696	100%	4,432	100%
062FH151	3,500	4,303	100%	5,281	100%	5,147	100%	4,868	100%
062FH163	3,500	4,160	100%	5,195	100%	5,037	100%	4,706	100%
062FH166	3,500	3,862	100%	4,700	100%	4,571	100%	4,297	100%
062FH168	3,500	4,528	100%	5,587	100%	5,432	100%	5,107	100%
062FH170	2,500	4,549	100%	5,373	100%	5,255	100%	5,009	100%
062FH171	2,500	3,030	100%	3,541	100%	3,464	100%	3,302	100%
062FH172	2,500	4,225	100%	5,056	100%	4,940	100%	4,699	100%
062FH174	1,500	3,455	100%	4,409	100%	4,283	100%	4,026	100%
062FH175	3,500	4,466	100%	5,689	100%	5,509	100%	5,129	100%
063FH001	3,500	3,805	100%	5,888	100%	5,714	100%	5,360	100%

063FH005	3,500	3,910	100%	6,425	100%	6,235	100%	5,850	100%
063FH006	3,500	3,907	100%	6,503	100%	6,299	100%	5,884	100%
063FH007	3,500	3,634	100%	5,647	100%	5,480	100%	5,141	100%
063FH012	3,500	3,515	100%	5,304	100%	5,157	100%	4,862	100%
063FH014	3,500	3,754	100%	5,738	100%	5,588	100%	5,287	100%
063FH023	3,500	3,619	100%	5,514	100%	5,361	100%	5,055	100%
063FH026	3,500	3,924	100%	6,224	100%	6,050	100%	5,699	100%
063FH028	3,000	3,051	100%	4,051	100%	3,942	100%	3,729	100%
063FH031	3,000	3,231	100%	4,431	100%	4,314	100%	4,085	100%
063FH033	2,500	3,304	100%	4,625	100%	4,506	100%	4,270	100%
063FH035	3,000	3,018	100%	4,009	100%	3,911	100%	3,715	100%
063FH037	3,000	3,428	100%	4,863	100%	4,737	100%	4,487	100%
063FH038	3,000	3,277	100%	4,556	100%	4,443	100%	4,217	100%
063FH040	3,000	3,198	100%	4,266	100%	4,158	100%	3,947	100%
063FH041	3,000	3,084	100%	4,011	100%	3,915	100%	3,726	100%
063FH042	3,000	3,492	100%	4,965	100%	4,837	100%	4,585	100%
063FH043	3,000	3,525	100%	5,057	100%	4,927	100%	4,669	100%
063FH044	3,000	3,611	100%	5,281	100%	5,144	100%	4,871	100%
063FH045	3,500	3,619	100%	5,345	100%	5,205	100%	4,926	100%
063FH046	3,500	3,586	100%	5,236	100%	5,101	100%	4,831	100%
063FH048	3,000	3,029	100%	3,866	100%	3,779	100%	3,605	100%
063FH049	3,000	3,289	100%	4,415	100%	4,310	100%	4,103	100%
063FH050	3,500	3,811	100%	5,671	100%	5,524	100%	5,231	100%
063FH051	3,000	3,698	100%	5,264	100%	5,135	100%	4,880	100%
063FH052	3,500	3,716	100%	5,402	100%	5,266	100%	4,995	100%
063FH053	3,000	3,225	100%	5,221	100%	5,077	100%	4,786	100%
063FH054	3,000	3,128	100%	4,997	100%	4,857	100%	4,574	100%
063FH055	3,000	3,209	100%	5,267	100%	5,118	100%	4,817	100%
063FH056	3,000	3,235	100%	5,419	100%	5,264	100%	4,951	100%
063FH057	3,000	3,243	100%	5,394	100%	5,241	100%	4,932	100%
063FH058	3,000	3,510	100%	6,222	100%	6,035	100%	5,655	100%
063FH059	3,000	3,396	100%	5,783	100%	5,614	100%	5,270	100%
063FH060	3,000	3,434	100%	5,876	100%	5,702	100%	5,349	100%
063FH061	3,000	3,629	100%	5,181	100%	5,051	100%	4,794	100%
063FH062	3,500	3,754	100%	6,139	100%	5,971	100%	5,630	100%
063FH063	3,500	3,772	100%	6,294	100%	6,119	100%	5,763	100%
063FH064	3,500	3,688	100%	6,037	100%	5,872	100%	5,538	100%
063FH065	3,500	3,644	100%	5,963	100%	5,798	100%	5,464	100%
063FH066	3,500	3,705	100%	6,185	100%	6,009	100%	5,652	100%
063FH071	500	4,248	100%	6,188	100%	5,884	100%	5,238	100%
063FH072	500	3,182	100%	4,374	100%	4,173	100%	3,745	100%
063FH074	3,000	3,670	100%	4,325	100%	4,112	100%	3,701	100%
063FH075	3,000	7,944	100%	8,314	100%	8,309	100%	8,231	100%
063FH076	3,000	5,175	100%	5,206	100%	5,200	100%	5,184	100%

063FH077	3,000	3,012	100%	3,917	100%	3,817	100%	3,623	100%
063FH081	3,000	3,003	100%	5,377	100%	5,213	100%	4,880	100%
063FH082	3,000	3,160	100%	5,628	100%	5,469	100%	5,147	100%
063FH083	3,000	3,116	100%	4,999	100%	4,863	100%	4,588	100%
063FH084	3,000	3,150	100%	5,100	100%	4,959	100%	4,673	100%
063FH085	3,000	3,287	100%	5,128	100%	4,994	100%	4,724	100%
063FH086	3,000	3,503	100%	5,450	100%	5,307	100%	5,019	100%
063FH087	3,000	3,637	100%	5,762	100%	5,607	100%	5,295	100%
063FH088	3,500	3,681	100%	5,746	100%	5,595	100%	5,291	100%
063FH089	3,500	3,575	100%	5,317	100%	5,169	100%	4,868	100%
063FH090	3,500	3,791	100%	6,153	100%	5,963	100%	5,577	100%
064FH001	3,000	4,806	100%	4,811	100%	4,804	100%	4,789	100%
064FH002	3,000	3,779	100%	3,769	100%	3,763	100%	3,751	100%
064FH003	1,500	2,425	100%	2,408	100%	2,406	100%	2,395	100%
064FH004	3,000	4,392	100%	4,380	100%	4,374	100%	4,359	100%
064FH005	1,500	3,316	100%	3,299	100%	3,297	100%	3,281	100%
064FH006	3,000	3,109	100%	3,106	100%	3,105	100%	3,101	100%
064FH007	3,000	4,598	100%	4,591	100%	4,586	100%	4,572	100%
064FH008	3,000	7,884	100%	8,421	100%	8,370	100%	8,249	100%
064FH009	1,500	5,509	100%	5,560	100%	5,557	100%	5,527	100%
064FH010	1,500	5,497	100%	5,529	100%	5,526	100%	5,498	100%
064FH011	3,000	4,642	100%	4,633	100%	4,630	100%	4,618	100%
064FH012	1,500	3,007	100%	2,995	100%	2,994	100%	2,985	100%
064FH013	3,000	5,176	100%	5,222	100%	5,219	100%	5,211	100%
064FH014	1,500	7,356	100%	7,573	100%	7,570	100%	7,470	100%
064FH015	1,500	5,991	100%	6,066	100%	6,063	100%	6,044	100%
064FH016	2,500	8,151	100%	8,573	100%	8,538	100%	8,417	100%
064FH017	1,500	8,363	100%	9,002	100%	8,977	100%	8,804	100%
064FH020	1,500	2,498	100%	2,943	100%	2,659	100%	2,140	100%
064FH021	1,500	2,239	100%	2,692	100%	2,431	100%	1,950	100%
064FH022	1,500	2,725	100%	3,211	100%	2,895	100%	2,327	100%
064FH023	1,500	2,055	100%	2,458	100%	2,247	100%	1,847	100%
064FH024	1,500	1,713	100%	2,143	100%	1,947	100%	1,571	100%
064FH025	1,500	2,791	100%	3,271	100%	2,959	100%	2,394	100%
064FH026	1,500	2,186	100%	2,664	100%	2,397	100%	1,904	100%
064FH027	1,500	2,187	100%	2,577	100%	2,361	100%	1,956	100%
064FH028	1,500	2,326	100%	2,807	100%	2,523	100%	2,001	100%
064FH029	1,500	2,338	100%	2,765	100%	2,513	100%	2,045	100%
064FH030	1,500	1,866	100%	2,269	100%	2,074	100%	1,701	100%
064FH031	1,500	2,108	100%	2,533	100%	2,305	100%	1,876	100%
064FH032	1,500	1,966	100%	2,372	100%	2,167	100%	1,778	100%
064FH033	1,500	1,732	100%	2,138	100%	1,953	100%	1,594	100%
064FH034	1,500	2,073	100%	2,544	100%	2,295	100%	1,829	100%
064FH035	1,500	2,801	100%	3,234	100%	2,952	100%	2,439	100%

064FH036	1,500	2,680	100%	3,018	100%	2,800	100%	2,395	100%
064FH037	1,500	2,544	100%	2,923	100%	2,680	100%	2,231	100%
064FH038	1,500	1,612	100%	2,033	100%	1,850	100%	1,494	100%
064FH039	1,500	2,639	100%	2,984	100%	2,763	100%	2,353	100%
064FH040	1,500	2,369	100%	2,753	100%	2,523	100%	2,096	100%
064FH041	1,500	1,792	100%	2,159	100%	1,987	100%	1,657	100%
064FH042	1,500	4,024	100%	4,263	100%	4,261	100%	4,235	100%
064FH043	1,500	4,389	100%	4,590	100%	4,588	100%	4,562	100%
064FH044	1,500	3,636	100%	3,818	100%	3,817	100%	3,791	100%
064FH045	1,500	3,586	100%	3,702	100%	3,701	100%	3,674	100%
064FH046	1,500	2,695	100%	3,025	100%	2,812	100%	2,418	100%
064FH047	1,500	3,645	100%	3,678	100%	3,677	100%	3,648	100%
064FH049	2,500	4,575	100%	4,541	100%	4,539	100%	4,516	100%
064FH050	2,500	3,100	100%	3,072	100%	3,071	100%	3,050	100%
064FH051	1,500	1,563	100%	1,781	100%	1,689	100%	1,507	100%
064FH052	2,500	2,968	100%	2,947	100%	2,946	100%	2,934	100%
064FH054	1,500	3,467	100%	3,656	100%	3,652	100%	3,637	100%
064FH055	1,500	6,349	100%	6,670	100%	6,666	100%	6,630	100%
064FH056	1,500	3,550	100%	3,678	100%	3,675	100%	3,662	100%
064FH057	1,500	4,529	100%	4,731	100%	4,727	100%	4,709	100%
064FH058	1,500	3,382	100%	3,517	100%	3,514	100%	3,501	100%
064FH059	1,500	3,948	100%	4,074	100%	4,072	100%	4,058	100%
064FH060	1,500	5,002	100%	5,021	100%	5,019	100%	5,000	100%
064FH061	1,500	3,879	100%	4,026	100%	4,022	100%	4,007	100%
064FH062	1,500	4,239	100%	4,332	100%	4,329	100%	4,314	100%
064FH063	1,500	6,923	100%	7,020	100%	7,016	100%	6,959	100%
064FH064	1,500	3,607	100%	3,698	100%	3,695	100%	3,683	100%
064FH065	1,500	3,380	100%	3,377	100%	3,376	100%	3,365	100%
064FH066	1,500	2,578	100%	2,577	100%	2,576	100%	2,569	100%
064FH067	1,500	3,466	100%	3,537	100%	3,534	100%	3,523	100%
064FH068	1,500	3,835	100%	3,915	100%	3,912	100%	3,899	100%
064FH070	1,500	5,016	100%	5,031	100%	5,029	100%	5,010	100%
064FH071	2,500	5,091	100%	5,233	100%	5,229	100%	5,211	100%
064FH073	1,500	4,839	100%	4,804	100%	4,801	100%	4,778	100%
064FH074	1,500	3,133	100%	3,177	100%	3,175	100%	3,165	100%
064FH075	1,500	3,666	100%	3,717	100%	3,714	100%	3,703	100%
064FH077	3,000	3,294	100%	3,312	100%	3,311	100%	3,303	100%
064FH078	2,500	3,708	100%	3,711	100%	3,709	100%	3,699	100%
064FH079	3,000	5,317	100%	5,424	100%	5,420	100%	5,404	100%
064FH080	2,500	3,292	100%	3,303	100%	3,301	100%	3,292	100%
064FH081	2,500	5,789	100%	5,856	100%	5,853	100%	5,832	100%
064FH082	2,500	4,356	100%	4,372	100%	4,370	100%	4,356	100%
064FH083	3,000	6,584	100%	6,604	100%	6,602	100%	6,584	100%
064FH085	3,000	5,618	100%	5,651	100%	5,649	100%	5,641	100%

064FH086	1,500	4,922	100%	4,891	100%	4,889	100%	4,867	100%
064FH087	2,500	3,314	100%	3,304	100%	3,303	100%	3,293	100%
064FH088	2,500	5,569	100%	5,607	100%	5,605	100%	5,585	100%
064FH089	3,000	6,317	100%	6,363	100%	6,361	100%	6,352	100%
064FH091	2,500	8,535	100%	9,001	100%	8,970	100%	8,798	100%
064FH092	2,500	6,027	100%	6,065	100%	6,062	100%	6,035	100%
064FH093	2,500	6,381	100%	6,429	100%	6,426	100%	6,402	100%
064FH094	3,000	6,044	100%	6,054	100%	6,053	100%	6,042	100%
064FH098	2,500	2,646	100%	3,224	100%	3,159	100%	3,029	100%
064FH101	3,000	3,994	100%	3,965	100%	3,964	100%	3,945	100%
064FH102	1,500	2,464	100%	2,423	100%	2,422	100%	2,400	100%
064FH104	1,500	3,457	100%	3,415	100%	3,413	100%	3,388	100%
064FH105	1,500	3,882	100%	3,854	100%	3,852	100%	3,834	100%
064FH107	1,500	5,229	100%	5,206	100%	5,204	100%	5,177	100%
064FH108	1,500	1,624	100%	1,605	100%	1,604	100%	1,590	100%
064FH109	1,500	2,649	100%	2,614	100%	2,613	100%	2,596	100%
064FH110	1,500	2,764	100%	2,713	100%	2,713	100%	2,689	100%
064FH111	1,500	2,146	100%	2,125	100%	2,123	100%	2,111	100%
064FH112	1,500	2,393	100%	2,371	100%	2,369	100%	2,360	100%
064FH113	1,500	4,656	100%	4,619	100%	4,617	100%	4,594	100%
064FH114	1,500	4,775	100%	4,738	100%	4,736	100%	4,713	100%
064FH115	1,500	1,678	100%	1,660	100%	1,658	100%	1,645	100%
064FH116	1,500	4,359	100%	4,292	100%	4,294	100%	4,252	100%
064FH117	1,500	2,772	100%	2,737	100%	2,736	100%	2,719	100%
064FH118	1,500	1,740	100%	1,726	100%	1,725	100%	1,714	100%
064FH119	1,500	3,063	100%	3,042	100%	3,041	100%	3,028	100%
064FH120	1,500	4,385	100%	4,352	100%	4,350	100%	4,330	100%
064FH121	1,500	4,662	100%	4,626	100%	4,624	100%	4,602	100%
064FH122	1,500	2,434	100%	2,413	100%	2,411	100%	2,403	100%
064FH123	1,500	1,947	100%	1,932	100%	1,930	100%	1,919	100%
064FH124	1,500	1,936	100%	1,915	100%	1,913	100%	1,898	100%
064FH125	1,500	4,528	100%	4,465	100%	4,467	100%	4,427	100%
064FH126	1,500	2,853	100%	2,832	100%	2,831	100%	2,820	100%
064FH127	2,500	5,259	100%	5,235	100%	5,232	100%	5,204	100%
064FH128	2,500	5,536	100%	5,537	100%	5,534	100%	5,506	100%
064FH129	2,500	4,685	100%	4,634	100%	4,633	100%	4,598	100%
064FH130	2,500	4,838	100%	4,804	100%	4,801	100%	4,778	100%
064FH131	2,500	3,246	100%	3,226	100%	3,225	100%	3,212	100%
064FH132	3,000	4,749	100%	4,702	100%	4,700	100%	4,670	100%
064FH133	3,000	5,124	100%	5,083	100%	5,080	100%	5,046	100%
064FH135	3,000	5,057	100%	5,002	100%	5,000	100%	4,958	100%
064FH136	3,000	4,902	100%	4,858	100%	4,855	100%	4,825	100%
064FH137	3,000	3,198	100%	3,157	100%	3,156	100%	3,134	100%
064FH138	3,000	3,776	100%	3,729	100%	3,728	100%	3,699	100%

064FH139	1,500	2,463	100%	3,062	100%	2,756	100%	2,186	100%
064FH140	1,500	4,067	100%	4,023	100%	4,022	100%	3,994	100%
064FH141	1,500	6,567	100%	6,711	100%	6,709	100%	6,665	100%
064FH142	1,500	4,760	100%	4,724	100%	4,722	100%	4,699	100%
065FH001	500	2,300	100%	2,698	100%	2,391	100%	1,845	100%
065FH002	500	2,282	100%	2,716	100%	2,392	100%	1,793	100%
065FH003	500	1,975	100%	2,444	100%	2,157	100%	1,563	100%
065FH004	750	1,908	100%	2,360	100%	2,113	100%	1,538	100%
065FH005	1,500	1,906	100%	2,329	100%	2,097	100%	1,555	100%
065FH007	1,500	2,312	100%	2,643	100%	2,436	100%	1,935	100%
065FH008	1,500	3,779	100%	3,691	100%	3,694	100%	3,642	100%
065FH009	1,500	4,491	100%	4,390	100%	4,396	100%	4,332	100%
065FH010	1,500	5,071	100%	4,979	100%	4,988	100%	4,922	100%
065FH011	1,500	4,599	100%	4,524	100%	4,528	100%	4,479	100%
065FH012	1,500	4,044	100%	3,964	100%	3,968	100%	3,919	100%
065FH013	1,500	3,966	100%	3,889	100%	3,892	100%	3,845	100%
065FH015	2,500	5,933	100%	5,912	100%	5,923	100%	5,847	100%
065FH016	750	4,514	100%	4,438	100%	4,444	100%	4,396	100%
065FH017	750	4,233	100%	4,160	100%	4,164	100%	4,119	100%
065FH018	1,500	3,512	100%	3,445	100%	3,448	100%	3,409	100%
065FH019	2,500	4,179	100%	4,107	100%	4,110	100%	4,067	100%
065FH020	1,500	2,664	100%	2,607	100%	2,608	100%	2,582	100%
065FH021	2,500	6,335	100%	6,332	100%	6,347	100%	6,271	100%
065FH022	1,500	4,663	100%	4,586	100%	4,593	100%	4,545	100%
065FH023	2,500	5,656	100%	5,583	100%	5,602	100%	5,533	100%
065FH024	1,500	4,681	100%	4,605	100%	4,613	100%	4,565	100%
065FH025	2,500	2,668	100%	2,619	100%	2,619	100%	2,597	100%
065FH026	1,500	2,802	100%	2,750	100%	2,752	100%	2,728	100%
065FH027	1,500	6,438	100%	6,438	100%	6,454	100%	6,380	100%
065FH028	2,500	5,972	100%	5,952	100%	5,962	100%	5,900	100%
065FH029	2,500	5,763	100%	5,712	100%	5,721	100%	5,663	100%
065FH030	2,500	5,954	100%	5,934	100%	5,944	100%	5,882	100%
065FH031	2,500	6,160	100%	6,143	100%	6,159	100%	6,089	100%
065FH032	3,500	6,549	100%	6,528	100%	6,563	100%	6,476	100%
065FH033	2,500	4,825	100%	4,759	100%	4,762	100%	4,719	100%
065FH034	2,500	4,252	100%	4,191	100%	4,195	100%	4,158	100%
065FH035	3,000	6,328	100%	6,323	100%	6,335	100%	6,269	100%
065FH036	2,500	6,686	100%	6,674	100%	6,708	100%	6,622	100%
065FH037	2,500	7,138	100%	7,158	100%	7,191	100%	7,104	100%
065FH042	1,500	1,940	100%	1,882	100%	1,884	100%	1,849	100%
065FH043	1,500	2,685	100%	2,586	100%	2,591	100%	2,546	100%
065FH046	1,500	2,159	100%	2,073	100%	2,076	100%	2,026	100%
065FH047	1,500	3,659	100%	3,566	100%	3,580	100%	3,528	100%
065FH048	1,500	2,732	100%	2,657	100%	2,662	100%	2,629	100%

065FH049	1,500	3,463	100%	3,363	100%	3,376	100%	3,323	100%
065FH051	1,500	1,754	100%	1,692	100%	1,694	100%	1,658	100%
065FH052	1,500	3,751	100%	3,668	100%	3,681	100%	3,634	100%
065FH053	1,500	2,336	100%	2,247	100%	2,250	100%	2,201	100%
065FH054	1,500	3,896	100%	3,800	100%	3,817	100%	3,758	100%
065FH055	1,500	2,334	100%	2,262	100%	2,267	100%	2,230	100%
065FH056	1,500	2,324	100%	2,248	100%	2,254	100%	2,215	100%
065FH057	1,500	2,663	100%	2,577	100%	2,584	100%	2,550	100%
065FH058	1,500	4,976	100%	4,879	100%	4,902	100%	4,839	100%
065FH059	1,500	4,765	100%	4,681	100%	4,697	100%	4,643	100%
065FH060	1,500	5,300	100%	5,197	100%	5,231	100%	5,158	100%
065FH061	1,500	4,902	100%	4,783	100%	4,828	100%	4,756	100%
065FH062	1,500	4,520	100%	4,426	100%	4,452	100%	4,395	100%
065FH063	1,500	4,772	100%	4,646	100%	4,703	100%	4,633	100%
065FH064	2,500	5,691	100%	5,608	100%	5,644	100%	5,572	100%
065FH065	1,500	5,389	100%	5,288	100%	5,330	100%	5,259	100%
065FH066	1,500	5,216	100%	5,120	100%	5,151	100%	5,084	100%
065FH067	1,500	4,776	100%	4,675	100%	4,711	100%	4,649	100%
065FH068	1,500	4,409	100%	4,332	100%	4,346	100%	4,300	100%
065FH069	1,500	5,881	100%	5,819	100%	5,860	100%	5,786	100%
065FH070	1,500	5,900	100%	5,837	100%	5,882	100%	5,803	100%
065FH071	2,500	5,292	100%	5,190	100%	5,236	100%	5,169	100%
065FH072	1,500	4,566	100%	4,472	100%	4,511	100%	4,459	100%
065FH073	1,500	5,067	100%	4,970	100%	5,014	100%	4,953	100%
065FH074	1,500	4,608	100%	4,533	100%	4,548	100%	4,500	100%
065FH075	2,500	4,855	100%	4,765	100%	4,798	100%	4,743	100%
065FH076	3,500	4,441	100%	4,369	100%	4,390	100%	4,346	100%
065FH077	2,500	5,143	100%	5,070	100%	5,077	100%	5,028	100%
065FH078	2,500	7,006	100%	7,035	100%	7,061	100%	6,979	100%
065FH079	2,500	6,764	100%	6,777	100%	6,800	100%	6,719	100%
065FH080	2,500	6,433	100%	6,428	100%	6,447	100%	6,372	100%
065FH081	2,500	3,727	100%	3,668	100%	3,672	100%	3,639	100%
065FH082	2,500	5,973	100%	5,938	100%	5,963	100%	5,898	100%
065FH083	2,500	6,747	100%	6,760	100%	6,783	100%	6,701	100%
065FH084	2,500	2,687	100%	2,640	100%	2,641	100%	2,620	100%
065FH085	2,500	4,128	100%	4,066	100%	4,070	100%	4,034	100%
065FH086	2,500	8,052	100%	8,277	100%	8,302	100%	8,214	100%
065FH087	1,500	3,247	100%	3,168	100%	3,170	100%	3,129	100%
065FH088	1,500	3,033	100%	2,958	100%	2,960	100%	2,922	100%
065FH089	2,500	5,034	100%	4,957	100%	4,965	100%	4,916	100%
065FH090	2,500	5,169	100%	5,091	100%	5,103	100%	5,046	100%
065FH091	2,500	4,142	100%	4,072	100%	4,079	100%	4,039	100%
065FH092	2,500	5,473	100%	5,411	100%	5,420	100%	5,364	100%
065FH093	3,500	6,150	100%	6,108	100%	6,151	100%	6,072	100%

065FH094	3,500	5,687	100%	5,605	100%	5,641	100%	5,572	100%
065FH095	1,500	5,651	100%	5,590	100%	5,600	100%	5,540	100%
065FH096	2,500	6,251	100%	6,214	100%	6,257	100%	6,174	100%
065FH097	1,500	2,246	100%	2,165	100%	2,165	100%	2,116	100%
065FH098	1,500	2,630	100%	2,538	100%	2,538	100%	2,493	100%
065FH099	1,500	2,412	100%	2,323	100%	2,322	100%	2,275	100%
065FH100	1,500	2,653	100%	2,559	100%	2,559	100%	2,515	100%
065FH101	1,500	2,307	100%	2,226	100%	2,225	100%	2,177	100%
065FH102	1,500	3,284	100%	3,201	100%	3,204	100%	3,157	100%
065FH103	1,500	4,057	100%	3,977	100%	3,981	100%	3,932	100%
065FH104	1,500	4,074	100%	3,995	100%	3,999	100%	3,950	100%
065FH105	1,500	3,408	100%	3,332	100%	3,335	100%	3,290	100%
065FH106	1,500	3,683	100%	3,605	100%	3,608	100%	3,561	100%
065FH107	1,500	3,071	100%	2,987	100%	2,989	100%	2,945	100%
065FH109	500	1,072	100%	1,285	100%	1,944	100%	1,463	100%
066FH001	1,500	3,915	100%	3,839	100%	3,865	100%	3,825	100%
066FH002	1,500	6,113	100%	6,021	100%	6,093	100%	6,006	100%
066FH003	1,500	5,140	100%	5,010	100%	5,076	100%	5,008	100%
066FH004	1,500	4,823	100%	4,691	100%	4,764	100%	4,699	100%
066FH005	1,500	4,367	100%	4,241	100%	4,301	100%	4,241	100%
066FH006	1,500	4,968	100%	4,827	100%	4,907	100%	4,835	100%
066FH007	1,500	5,191	100%	5,053	100%	5,124	100%	5,050	100%
066FH008	1,500	5,181	100%	5,044	100%	5,107	100%	5,039	100%
066FH009	1,500	5,538	100%	5,376	100%	5,457	100%	5,376	100%
066FH010	1,500	4,492	100%	4,364	100%	4,419	100%	4,352	100%
066FH011	1,500	4,528	100%	4,417	100%	4,465	100%	4,407	100%
066FH012	1,500	3,570	100%	3,473	100%	3,501	100%	3,454	100%
066FH013	1,500	3,515	100%	3,424	100%	3,453	100%	3,411	100%
075FH001	3,000	3,246	100%	2,651	88%	2,604	87%	2,542	85%
075FH002	3,000	4,003	100%	3,291	100%	3,229	100%	3,144	100%
075FH009	3,000	4,051	100%	3,421	100%	3,366	100%	3,297	100%
075FH013	3,000	4,270	100%	3,698	100%	3,649	100%	3,591	100%
075FH021	3,000	3,028	100%	2,489	83%	2,462	82%	2,437	81%
075FH025	1,500	2,498	100%	2,473	100%	2,445	100%	2,419	100%
075FH026	1,500	3,175	100%	2,660	100%	2,633	100%	2,609	100%
075FH027	1,500	1,906	100%	1,572	100%	1,560	100%	1,549	100%
075FH028	1,500	2,974	100%	2,445	100%	2,421	100%	2,398	100%
075FH029	1,500	2,282	100%	1,842	100%	1,828	100%	1,813	100%
075FH030	1,500	2,254	100%	1,822	100%	1,808	100%	1,794	100%
075FH032	3,000	3,015	100%	2,483	83%	2,460	82%	2,438	81%
075FH035	1,500	1,608	100%	1,645	100%	1,629	100%	1,615	100%
075FH036	1,500	1,810	100%	1,514	100%	1,507	100%	1,499	100%
075FH039	1,500	1,538	100%	2,248	100%	2,235	100%	2,223	100%
075FH040	1,500	1,979	100%	1,655	100%	1,647	100%	1,638	100%

075FH041	1,500	1,554	100%	1,283	86%	1,278	85%	1,272	85%
075FH042	1,500	1,696	100%	1,411	94%	1,404	94%	1,398	93%
075FH044	1,500	3,401	100%	2,997	100%	2,982	100%	2,966	100%
075FH045	1,500	7,744	100%	7,791	100%	7,729	100%	7,675	100%
075FH046	2,500	6,861	100%	6,674	100%	6,621	100%	6,576	100%
075FH047	1,500	4,664	100%	5,147	100%	5,048	100%	4,956	100%
075FH053	2,500	7,331	100%	7,420	100%	7,361	100%	7,310	100%
075FH054	1,500	8,592	100%	9,003	100%	8,928	100%	8,860	100%
076FH001	3,000	4,480	100%	3,914	100%	3,863	100%	3,805	100%
076FH006	3,000	4,101	100%	3,496	100%	3,452	100%	3,414	100%
076FH022	4,000	4,610	100%	4,014	100%	3,961	99%	3,916	98%
076FH023	1,500	3,043	100%	2,526	100%	2,501	100%	2,478	100%
076FH024	1,500	1,712	100%	1,375	92%	1,364	91%	1,355	90%
076FH027	1,500	2,201	100%	1,768	100%	1,752	100%	1,737	100%
076FH028	3,000	4,021	100%	3,480	100%	3,442	100%	3,409	100%
076FH029	3,000	3,445	100%	2,912	97%	2,881	96%	2,855	95%
076FH030	1,500	1,597	100%	1,267	84%	1,257	84%	1,249	83%
076FH031	1,500	2,398	100%	1,982	100%	1,963	100%	1,948	100%
076FH032	1,500	2,336	100%	1,914	100%	1,898	100%	1,883	100%
076FH033	1,500	4,149	100%	3,610	100%	3,571	100%	3,539	100%
076FH034	1,500	2,329	100%	1,894	100%	1,877	100%	1,863	100%
076FH035	1,500	1,719	100%	1,389	93%	1,378	92%	1,369	91%
076FH036	1,500	1,799	100%	1,462	97%	1,450	97%	1,440	96%
076FH038	1,500	1,796	100%	1,486	99%	1,473	98%	1,463	98%
076FH040	1,500	2,528	100%	2,108	100%	2,092	100%	2,078	100%
076FH042	1,500	3,749	100%	3,192	100%	3,162	100%	3,136	100%
076FH044	1,500	1,652	100%	1,367	91%	1,359	91%	1,352	90%
076FH045	1,500	3,938	100%	3,428	100%	3,399	100%	3,373	100%
076FH046	2,500	5,167	100%	4,685	100%	4,638	100%	4,601	100%
076FH047	1,500	6,761	100%	6,413	100%	6,353	100%	6,305	100%
076FH048	2,500	7,944	100%	7,747	100%	7,663	100%	7,593	100%
076FH049	1,500	6,794	100%	6,506	100%	6,451	100%	6,406	100%
076FH050	3,000	4,981	100%	4,533	100%	4,487	100%	4,450	100%
076FH053	4,000	4,506	100%	3,938	98%	3,887	97%	3,845	96%
076FH054	4,000	4,119	100%	3,566	89%	3,522	88%	3,485	87%
076FH055	4,000	4,742	100%	4,185	100%	4,131	100%	4,085	100%
076FH056	4,000	4,239	100%	3,742	94%	3,700	92%	3,665	92%
076FH057	4,000	5,313	100%	4,851	100%	4,788	100%	4,736	100%
076FH060	3,000	3,978	100%	3,418	100%	3,378	100%	3,344	100%
076FH061	4,000	5,276	100%	4,826	100%	4,765	100%	4,715	100%
076FH065	4,000	5,154	100%	4,626	100%	4,564	100%	4,513	100%
076FH066	4,000	5,552	100%	5,119	100%	5,056	100%	5,004	100%
076FH067	3,000	5,593	100%	5,184	100%	5,124	100%	5,074	100%
076FH068	3,000	5,495	100%	5,069	100%	5,009	100%	4,959	100%

076FH069	4,000	4,257	100%	3,665	92%	3,618	90%	3,578	89%
076FH070	3,000	3,886	100%	3,336	100%	3,299	100%	3,267	100%
076FH071	3,000	5,798	100%	5,513	100%	5,441	100%	5,381	100%
076FH072	3,000	4,569	100%	4,189	100%	4,136	100%	4,092	100%
076FH073	3,000	3,592	100%	3,200	100%	3,160	100%	3,129	100%
076FH074	3,000	3,814	100%	3,398	100%	3,355	100%	3,321	100%
077FH009	3,000	3,146	100%	4,299	100%	4,197	100%	3,991	100%
077FH010	3,000	3,264	100%	4,510	100%	4,402	100%	4,185	100%
077FH012	3,000	3,020	100%	3,999	100%	3,909	100%	3,727	100%
077FH014	3,000	3,261	100%	4,464	100%	4,360	100%	4,150	100%
077FH017	3,000	3,400	100%	4,708	100%	4,597	100%	4,374	100%
077FH025	3,000	3,213	100%	4,172	100%	4,080	100%	3,897	100%
077FH027	3,000	3,874	100%	5,632	100%	5,492	100%	5,216	100%
077FH028	3,000	3,182	100%	4,163	100%	4,072	100%	3,891	100%
077FH029	3,000	3,159	100%	4,143	100%	4,053	100%	3,871	100%
077FH031	3,000	3,514	100%	4,874	100%	4,759	100%	4,530	100%
077FH032	3,000	3,046	100%	3,877	100%	3,796	100%	3,635	100%
077FH033	3,000	3,496	100%	4,793	100%	4,682	100%	4,463	100%
077FH034	3,000	3,542	100%	4,856	100%	4,745	100%	4,525	100%
077FH035	2,500	3,235	100%	4,277	100%	4,183	100%	3,995	100%
077FH037	4,000	4,855	100%	4,898	100%	4,757	100%	4,665	100%
077FH038	4,000	5,264	100%	5,479	100%	5,313	100%	5,210	100%
077FH039	4,000	5,276	100%	5,486	100%	5,325	100%	5,225	100%
077FH040	4,000	5,151	100%	5,314	100%	5,157	100%	5,059	100%
077FH043	1,500	1,728	100%	1,592	100%	1,567	100%	1,547	100%
077FH044	1,500	2,669	100%	2,522	100%	2,479	100%	2,440	100%
077FH046	4,000	4,127	100%	4,038	100%	3,966	99%	3,902	98%
077FH047	1,500	1,854	100%	1,681	100%	1,647	100%	1,618	100%
077FH048	1,500	4,425	100%	4,370	100%	4,300	100%	4,238	100%
077FH049	1,500	4,495	100%	4,450	100%	4,377	100%	4,311	100%
077FH050	1,500	1,620	100%	1,481	99%	1,457	97%	1,438	96%
077FH051	1,500	3,332	100%	3,248	100%	3,200	100%	3,157	100%
077FH052	1,500	4,030	100%	3,951	100%	3,890	100%	3,838	100%
077FH054	1,500	1,618	100%	1,955	100%	1,925	100%	1,900	100%
077FH057	1,500	4,810	100%	4,771	100%	4,703	100%	4,642	100%
077FH058	1,500	4,695	100%	4,648	100%	4,579	100%	4,518	100%
077FH063	1,500	4,441	100%	4,371	100%	4,306	100%	4,250	100%
077FH064	2,500	3,595	100%	3,498	100%	3,446	100%	3,402	100%
077FH066	3,000	6,119	100%	7,067	100%	6,829	100%	6,692	100%
077FH067	4,000	5,278	100%	5,478	100%	5,322	100%	5,224	100%
077FH068	4,000	5,541	100%	5,816	100%	5,655	100%	5,554	100%
077FH069	4,000	5,570	100%	5,844	100%	5,686	100%	5,588	100%
077FH070	4,000	5,706	100%	6,015	100%	5,854	100%	5,758	100%
077FH071	4,000	6,076	100%	6,502	100%	6,333	100%	6,234	100%

077FH072	4,000	6,876	100%	7,610	100%	7,409	100%	7,292	100%
077FH073	1,500	1,705	100%	1,577	100%	1,553	100%	1,532	100%
077FH074	1,500	2,017	100%	1,885	100%	1,854	100%	1,827	100%
077FH075	1,500	1,893	100%	1,768	100%	1,742	100%	1,719	100%
077FH077	1,500	1,559	100%	1,487	99%	1,467	98%	1,450	97%
077FH078	1,500	1,990	100%	1,881	100%	1,858	100%	1,837	100%
077FH081	1,500	1,570	100%	1,453	97%	1,433	96%	1,416	94%
077FH083	1,500	3,113	100%	3,026	100%	2,988	100%	2,955	100%
077FH084	1,500	2,343	100%	2,252	100%	2,225	100%	2,201	100%
077FH085	1,500	4,343	100%	4,325	100%	4,263	100%	4,217	100%
077FH086	1,500	3,182	100%	3,119	100%	3,081	100%	3,046	100%
077FH088	3,000	3,210	100%	3,133	100%	3,068	100%	3,013	100%
077FH089	2,500	3,177	100%	3,102	100%	3,053	100%	3,010	100%
077FH090	3,000	6,548	100%	7,031	100%	6,891	100%	6,809	100%
077FH091	2,500	2,697	100%	2,608	100%	2,578	100%	2,551	100%
077FH092	3,000	3,145	100%	4,172	100%	4,079	100%	3,890	100%
077FH093	3,000	3,381	100%	4,510	100%	4,410	100%	4,210	100%
077FH094	3,000	3,073	100%	3,937	100%	3,854	100%	3,689	100%
077FH098	3,000	3,395	100%	4,504	100%	4,405	100%	4,209	100%
077FH099	3,000	3,198	100%	4,131	100%	4,044	100%	3,871	100%
077FH106	2,500	3,440	100%	4,723	100%	4,613	100%	4,393	100%
077FH109	3,000	3,324	100%	4,660	100%	4,547	100%	4,318	100%
078FH003	3,000	4,805	100%	4,856	100%	4,748	100%	4,681	100%
078FH010	3,000	5,059	100%	5,130	100%	5,060	100%	5,020	100%
078FH013	3,000	4,635	100%	4,592	100%	4,589	100%	4,562	100%
078FH014	3,000	3,842	100%	3,810	100%	3,808	100%	3,786	100%
078FH016	4,000	10,092	100%	11,140	100%	11,083	100%	10,866	100%
078FH017	3,000	8,417	100%	9,010	100%	8,980	100%	8,719	100%
078FH018	3,000	6,049	100%	6,074	100%	6,069	100%	6,016	100%
078FH019	3,000	8,060	100%	8,429	100%	8,422	100%	8,258	100%
078FH020	3,000	6,346	100%	6,384	100%	6,379	100%	6,321	100%
078FH021	3,000	4,577	100%	4,519	100%	4,515	100%	4,477	100%
078FH022	3,000	5,910	100%	5,928	100%	5,923	100%	5,866	100%
078FH023	3,000	4,790	100%	4,715	100%	4,710	100%	4,659	100%
078FH024	3,000	4,834	100%	4,761	100%	4,756	100%	4,705	100%
078FH025	3,000	4,107	100%	4,043	100%	4,038	100%	3,993	100%
078FH027	3,000	3,910	100%	3,847	100%	3,843	100%	3,807	100%
078FH028	3,000	7,436	100%	7,628	100%	7,620	100%	7,494	100%
079FH001	2,500	4,872	100%	5,302	100%	5,300	100%	5,251	100%
079FH002	2,500	4,997	100%	4,926	100%	4,934	100%	4,888	100%
079FH003	2,500	4,907	100%	4,838	100%	4,848	100%	4,803	100%
079FH004	2,500	4,446	100%	4,379	100%	4,387	100%	4,344	100%
079FH005	1,500	3,285	100%	3,230	100%	3,234	100%	3,208	100%
079FH006	2,500	3,948	100%	3,889	100%	3,894	100%	3,860	100%
079FH007	1,500	3,174	100%	3,119	100%	3,123	100%	3,098	100%
----------	-------	-------	------	-------	------	-------	------	-------	------
079FH008	3,500	5,832	100%	5,783	100%	5,787	100%	5,727	100%
079FH009	3,500	5,156	100%	5,088	100%	5,092	100%	5,040	100%
079FH010	2,500	6,777	100%	6,832	100%	6,828	100%	6,748	100%
079FH011	3,500	6,869	100%	6,892	100%	6,894	100%	6,820	100%
079FH012	1,500	5,858	100%	5,815	100%	5,809	100%	5,740	100%
079FH013	3,500	4,872	100%	4,805	100%	4,807	100%	4,762	100%
079FH014	1,500	7,091	100%	7,153	100%	7,148	100%	7,063	100%
079FH015	1,500	7,673	100%	7,830	100%	7,825	100%	7,736	100%
079FH016	1,500	6,944	100%	6,972	100%	6,971	100%	6,886	100%
079FH017	2,500	5,763	100%	5,713	100%	5,712	100%	5,649	100%
079FH018	2,500	5,123	100%	5,055	100%	5,055	100%	5,002	100%
079FH019	1,500	3,480	100%	3,425	100%	3,421	100%	3,390	100%
079FH020	3,000	5,716	100%	5,655	100%	5,648	100%	5,578	100%
079FH021	1,500	4,648	100%	4,578	100%	4,573	100%	4,523	100%
079FH022	1,500	2,917	100%	2,863	100%	2,860	100%	2,836	100%
079FH023	3,000	4,128	100%	4,060	100%	4,055	100%	4,013	100%
079FH024	3,000	3,392	100%	3,328	100%	3,323	100%	3,291	100%
079FH025	1,500	3,394	100%	3,337	100%	3,333	100%	3,302	100%
079FH026	1,500	6,755	100%	6,773	100%	6,769	100%	6,678	100%
079FH027	2,500	5,794	100%	5,738	100%	5,734	100%	5,659	100%
079FH028	1,500	5,602	100%	5,538	100%	5,533	100%	5,464	100%
079FH029	1,500	5,117	100%	5,038	100%	5,060	100%	5,008	100%
079FH030	1,500	4,943	100%	4,866	100%	4,886	100%	4,838	100%
079FH031	3,500	6,369	100%	6,326	100%	6,365	100%	6,284	100%
079FH032	3,500	4,911	100%	4,819	100%	4,851	100%	4,798	100%
079FH033	1,500	4,786	100%	4,706	100%	4,748	100%	4,695	100%
079FH034	1,500	6,328	100%	6,503	100%	6,558	100%	6,470	100%
079FH035	3,500	4,655	100%	4,586	100%	4,617	100%	4,567	100%
079FH036	1,500	3,874	100%	3,818	100%	3,829	100%	3,797	100%
079FH037	1,500	4,478	100%	4,625	100%	4,658	100%	4,610	100%
079FH038	1,500	2,972	100%	2,958	100%	2,966	100%	2,942	100%
079FH039	1,500	4,170	100%	4,106	100%	4,115	100%	4,081	100%
079FH040	1,500	5,026	100%	4,958	100%	4,970	100%	4,925	100%
079FH041	1,500	5,449	100%	5,369	100%	5,403	100%	5,346	100%
079FH042	1,500	3,090	100%	3,040	100%	3,050	100%	3,025	100%
079FH043	1,500	5,121	100%	5,074	100%	5,103	100%	5,052	100%
079FH044	1,500	4,916	100%	4,863	100%	4,887	100%	4,839	100%
079FH045	1,500	5,670	100%	6,328	100%	6,370	100%	6,294	100%
079FH046	1,500	6,334	100%	6,316	100%	6,346	100%	6,273	100%
079FH047	2,500	5,457	100%	5,396	100%	5,395	100%	5,337	100%
079FH048	1,500	5,425	100%	5,364	100%	5,366	100%	5,309	100%
079FH049	3,000	5,132	100%	5,075	100%	5,085	100%	5,037	100%
079FH050	2,500	6,345	100%	6,341	100%	6,337	100%	6,257	100%

079FH051	1,500	7,201	100%	7,376	100%	7,383	100%	7,368	100%
079FH052	1,500	7,115	100%	7,185	100%	7,183	100%	7,163	100%
079FH053	3,000	7,929	100%	8,472	100%	8,472	100%	8,494	100%
079FH054	1,500	8,634	100%	9,310	100%	9,308	100%	9,322	100%
079FH055	1,500	6,504	100%	6,507	100%	6,502	100%	6,412	100%
079FH056	1,500	5,019	100%	4,943	100%	4,939	100%	4,879	100%
079FH057	3,000	6,269	100%	6,246	100%	6,234	100%	6,147	100%
079FH058	1,500	3,085	100%	3,024	100%	3,020	100%	2,991	100%
079FH059	3,500	5,158	100%	5,087	100%	5,084	100%	5,026	100%
079FH060	1,500	7,165	100%	7,216	100%	7,208	100%	7,108	100%
079FH061	1,500	4,707	100%	4,631	100%	4,627	100%	4,570	100%
079FH062	3,500	5,624	100%	5,562	100%	5,558	100%	5,491	100%
079FH063	1,500	2,482	100%	2,429	100%	2,424	100%	2,398	100%
079FH064	1,500	4,307	100%	4,232	100%	4,228	100%	4,174	100%
079FH065	3,000	4,798	100%	4,729	100%	4,725	100%	4,673	100%
079FH066	3,000	5,540	100%	5,452	100%	5,437	100%	5,384	100%
079FH067	2,500	4,916	100%	4,838	100%	4,828	100%	4,774	100%
079FH068	3,000	3,262	100%	3,201	100%	3,196	100%	3,164	100%
079FH069	1,500	7,952	100%	8,368	100%	8,366	100%	8,378	100%
079FH070	2,500	7,959	100%	8,378	100%	8,375	100%	8,394	100%
079FH071	3,000	7,994	100%	8,459	100%	8,459	100%	8,485	100%
079FH072	2,500	6,822	100%	6,836	100%	6,830	100%	6,763	100%
079FH073	2,500	3,885	100%	3,827	100%	3,824	100%	3,781	100%
079FH074	1,500	5,374	100%	5,296	100%	5,289	100%	5,218	100%
079FH075	2,500	4,981	100%	4,905	100%	4,898	100%	4,834	100%
079FH076	3,000	4,241	100%	4,177	100%	4,171	100%	4,116	100%
079FH077	3,500	5,004	100%	4,942	100%	4,936	100%	4,871	100%
079FH078	1,500	2,479	100%	2,430	100%	2,425	100%	2,400	100%
079FH079	3,000	4,655	100%	4,592	100%	4,585	100%	4,524	100%
079FH080	3,000	4,326	100%	4,271	100%	4,264	100%	4,209	100%
079FH081	2,500	4,953	100%	4,894	100%	4,884	100%	4,827	100%
079FH082	3,000	3,912	100%	3,847	100%	3,839	100%	3,798	100%
079FH083	3,000	4,423	100%	4,360	100%	4,351	100%	4,303	100%
079FH084	2,500	4,256	100%	4,201	100%	4,194	100%	4,139	100%
079FH085	2,500	3,305	100%	3,252	100%	3,246	100%	3,215	100%
079FH086	3,000	7,139	100%	7,136	100%	7,169	100%	7,152	100%
079FH087	1,500	8,198	100%	8,727	100%	8,727	100%	8,762	100%
079FH088	3,500	7,066	100%	7,106	100%	7,111	100%	7,097	100%
079FH089	3,500	7,533	100%	7,744	100%	7,745	100%	7,742	100%
079FH090	2,500	7,736	100%	7,985	100%	8,012	100%	8,017	100%
079FH091	2,500	8,190	100%	8,727	100%	8,727	100%	8,766	100%
079FH092	1,500	4,064	100%	4,013	100%	4,016	100%	3,981	100%
079FH093	2,500	9,349	100%	10,542	100%	10,562	100%	10,555	100%
079FH094	2,500	7,206	100%	7,311	100%	7,327	100%	7,314	100%

079FH095	2,500	5,095	100%	5,027	100%	5,021	100%	4,957	100%
079FH096	2,500	8,590	100%	9,365	100%	9,346	100%	9,366	100%
079FH097	2,500	5,033	100%	4,969	100%	4,964	100%	4,903	100%
079FH098	2,500	4,337	100%	4,278	100%	4,273	100%	4,222	100%
079FH099	2,500	2,926	100%	2,878	100%	2,876	100%	2,848	100%
079FH100	2,500	6,329	100%	6,337	100%	6,335	100%	6,325	100%
079FH101	2,500	4,979	100%	4,977	100%	4,977	100%	4,972	100%
079FH102	2,500	2,693	100%	2,737	100%	2,735	100%	2,717	100%
079FH104	2,500	4,053	100%	3,997	100%	3,991	100%	3,943	100%
079FH105	3,000	6,102	100%	6,089	100%	6,119	100%	6,050	100%
079FH106	3,000	5,568	100%	5,523	100%	5,554	100%	5,496	100%
079FH108	2,500	3,243	100%	3,182	100%	3,177	100%	3,144	100%
079FH109	3,500	4,983	100%	4,920	100%	4,914	100%	4,851	100%
079FH110	3,500	3,794	100%	3,743	100%	3,739	100%	3,695	100%
079FH111	2,500	6,577	100%	6,573	100%	6,569	100%	6,558	100%
079FH112	2,500	4,072	100%	4,010	100%	4,006	100%	3,957	100%
079FH113	2,500	3,623	100%	3,573	100%	3,569	100%	3,535	100%
079FH114	2,500	4,311	100%	4,272	100%	4,283	100%	4,246	100%
079FH115	1,500	5,034	100%	4,987	100%	5,010	100%	4,961	100%
079FH116	2,500	5,279	100%	5,234	100%	5,261	100%	5,208	100%
079FH117	3,500	6,764	100%	6,777	100%	6,773	100%	6,718	100%
079FH118	3,500	6,477	100%	6,474	100%	6,470	100%	6,386	100%
079FH119	3,500	4,707	100%	4,635	100%	4,632	100%	4,575	100%
079FH120	3,500	7,015	100%	7,039	100%	7,043	100%	7,029	100%
079FH121	3,500	6,594	100%	6,603	100%	6,601	100%	6,524	100%
079FH122	1,500	4,931	100%	4,857	100%	4,856	100%	4,802	100%
079FH123	1,500	5,965	100%	5,939	100%	5,936	100%	5,864	100%
079FH124	1,500	6,491	100%	6,495	100%	6,492	100%	6,411	100%
079FH125	1,500	4,171	100%	4,106	100%	4,116	100%	4,081	100%
079FH126	1,500	3,235	100%	3,179	100%	3,187	100%	3,161	100%
079FH127	3,500	6,803	100%	6,905	100%	6,980	100%	6,973	100%
079FH128	3,000	7,191	100%	7,399	100%	7,442	100%	7,455	100%
079FH130	2,500	4,040	100%	3,976	100%	3,970	100%	3,922	100%
079FH131	2,500	4,220	100%	4,182	100%	4,191	100%	4,157	100%
079FH132	2,500	4,857	100%	4,815	100%	4,835	100%	4,788	100%
079FH133	2,500	4,339	100%	4,301	100%	4,312	100%	4,274	100%
079FH134	1,500	4,408	100%	5,300	100%	5,298	100%	5,247	100%
079FH135	1,500	6,068	100%	6,457	100%	6,454	100%	6,371	100%
079FH136	1,500	6,588	100%	6,592	100%	6,587	100%	6,493	100%
079FH137	3,000	4,601	100%	4,521	100%	4,515	100%	4,458	100%
079FH138	2,500	5,625	100%	5,668	100%	5,665	100%	5,603	100%
079FH139	1,500	5,236	100%	5,167	100%	5,164	100%	5,108	100%
079FH140	1,500	4,147	100%	4,087	100%	4,085	100%	4,043	100%
079FH141	2,500	6,417	100%	6,415	100%	6,412	100%	6,328	100%

079FH142	3,500	6,623	100%	6,632	100%	6,628	100%	6,541	100%
079FH143	1,500	5,263	100%	5,176	100%	5,209	100%	5,154	100%
079FH145	1,500	4,813	100%	4,750	100%	4,754	100%	4,707	100%
079FH146	3,500	4,682	100%	4,617	100%	4,620	100%	4,577	100%
079FH147	2,500	4,749	100%	4,682	100%	4,686	100%	4,641	100%
079FH148	1,500	6,436	100%	6,449	100%	6,447	100%	6,375	100%
079FH149	3,000	9,012	100%	10,002	100%	10,002	100%	10,013	100%
079FH150	3,000	8,771	100%	9,677	100%	9,664	100%	9,683	100%
080FH001	1,500	4,178	100%	4,071	100%	4,121	100%	4,072	100%
080FH002	1,500	4,480	100%	4,382	100%	4,426	100%	4,375	100%
080FH003	1,500	4,474	100%	4,334	100%	4,437	100%	4,377	100%
080FH004	1,500	2,926	100%	2,867	100%	2,878	100%	2,854	100%
080FH005	1,500	3,488	100%	3,430	100%	3,443	100%	3,413	100%
080FH006	1,500	4,426	100%	4,317	100%	4,416	100%	4,357	100%
080FH007	3,000	5,358	100%	5,225	100%	5,280	100%	5,210	100%
080FH008	1,500	5,612	100%	5,492	100%	5,634	100%	5,554	100%
080FH009	1,500	4,493	100%	4,385	100%	4,483	100%	4,424	100%
080FH010	3,000	5,418	100%	5,291	100%	5,344	100%	5,275	100%
080FH011	3,000	3,099	100%	3,039	100%	3,052	100%	3,023	100%
080FH012	1,500	4,912	100%	4,804	100%	4,897	100%	4,835	100%
080FH013	3,000	4,786	100%	4,718	100%	4,761	100%	4,709	100%
080FH014	3,000	5,045	100%	4,954	100%	4,987	100%	4,928	100%
080FH015	3,000	5,294	100%	5,179	100%	5,220	100%	5,155	100%
080FH016	3,000	5,689	100%	5,577	100%	5,627	100%	5,556	100%
080FH017	1,500	5,119	100%	4,999	100%	5,190	100%	5,118	100%
080FH018	1,500	3,291	100%	3,249	100%	3,278	100%	3,252	100%
080FH019	1,500	4,214	100%	4,133	100%	4,196	100%	4,142	100%
080FH020	2,500	5,102	100%	4,990	100%	5,028	100%	4,967	100%
080FH021	1,500	3,034	100%	3,002	100%	3,044	100%	3,026	100%
080FH022	1,500	3,312	100%	3,268	100%	3,294	100%	3,269	100%
080FH023	1,500	4,447	100%	4,361	100%	4,499	100%	4,443	100%
080FH024	1,500	5,022	100%	4,909	100%	5,135	100%	5,062	100%
080FH025	1,500	6,196	100%	6,133	100%	6,180	100%	6,105	100%
080FH026	3,000	5,364	100%	5,255	100%	5,469	100%	5,402	100%
080FH027	2,500	4,997	100%	4,883	100%	5,117	100%	5,042	100%
080FH028	1,500	5,948	100%	5,879	100%	5,918	100%	5,849	100%
080FH029	3,000	5,653	100%	5,547	100%	5,722	100%	5,651	100%
080FH030	1,500	5,333	100%	5,240	100%	5,269	100%	5,210	100%
080FH031	2,500	4,557	100%	4,464	100%	4,629	100%	4,568	100%
080FH032	2,500	4,930	100%	4,816	100%	5,064	100%	4,989	100%
080FH033	1,500	6,878	100%	6,855	100%	6,895	100%	6,828	100%
080FH034	3,000	5,282	100%	5,188	100%	5,217	100%	5,160	100%
080FH035	3,000	3,768	100%	3,709	100%	3,924	100%	3,879	100%
080FH036	1,500	3,003	100%	2,972	100%	3,008	100%	2,991	100%

080FH037	1,500	4,112	100%	4,042	100%	4,253	100%	4,196	100%
080FH038	1,500	4,638	100%	4,533	100%	4,720	100%	4,655	100%
080FH039	1,500	4,452	100%	4,369	100%	4,632	100%	4,568	100%
080FH040	1,500	4,947	100%	4,832	100%	5,265	100%	5,191	100%
080FH041	1,500	4,107	100%	4,038	100%	4,258	100%	4,204	100%
080FH042	1,500	6,524	100%	6,504	100%	6,519	100%	6,453	100%
080FH043	1,500	3,371	100%	3,333	100%	3,414	100%	3,388	100%
080FH044	1,500	3,603	100%	3,549	100%	3,562	100%	3,531	100%
080FH045	3,000	4,517	100%	4,432	100%	4,464	100%	4,415	100%
080FH046	3,000	3,824	100%	3,764	100%	3,998	100%	3,952	100%
080FH047	3,000	4,986	100%	4,864	100%	5,377	100%	5,301	100%
080FH050	3,000	4,920	100%	4,799	100%	5,510	100%	5,432	100%
080FH051	3,000	4,752	100%	4,643	100%	5,464	100%	5,385	100%
080FH052	3,000	4,094	100%	4,013	100%	4,677	100%	4,595	100%
080FH054	1,500	2,990	100%	2,953	100%	3,040	100%	3,013	100%
080FH055	1,500	3,414	100%	3,374	100%	3,500	100%	3,468	100%
080FH056	1,500	3,760	100%	3,705	100%	3,885	100%	3,839	100%
080FH057	1,500	3,714	100%	3,665	100%	3,821	100%	3,780	100%
080FH058	1,500	3,766	100%	3,717	100%	3,870	100%	3,829	100%
080FH059	1,500	3,169	100%	3,137	100%	3,228	100%	3,203	100%
080FH060	1,500	3,757	100%	3,706	100%	3,863	100%	3,821	100%
080FH061	1,500	3,861	100%	3,809	100%	3,965	100%	3,924	100%
080FH062	1,500	3,955	100%	3,898	100%	4,063	100%	4,020	100%
080FH063	1,500	3,806	100%	3,759	100%	3,904	100%	3,866	100%
080FH064	1,500	3,911	100%	3,859	100%	4,014	100%	3,973	100%
080FH065	1,500	3,732	100%	3,688	100%	3,824	100%	3,787	100%
080FH066	1,500	3,729	100%	3,686	100%	3,819	100%	3,783	100%
080FH067	1,500	3,743	100%	3,700	100%	3,834	100%	3,797	100%
080FH068	1,500	3,684	100%	3,642	100%	3,770	100%	3,735	100%
080FH069	1,500	4,495	100%	4,410	100%	4,611	100%	4,549	100%
080FH070	1,500	4,446	100%	4,362	100%	4,551	100%	4,490	100%
080FH071	1,500	3,611	100%	3,562	100%	3,672	100%	3,636	100%
080FH072	1,500	3,212	100%	3,181	100%	3,267	100%	3,244	100%
080FH073	1,500	3,090	100%	3,056	100%	3,145	100%	3,118	100%
080FH074	1,500	3,573	100%	3,531	100%	3,665	100%	3,629	100%
080FH075	1,500	4,115	100%	4,050	100%	4,241	100%	4,186	100%
080FH076	1,500	4,415	100%	4,334	100%	4,367	100%	4,314	100%
080FH077	1,500	7,005	100%	7,140	100%	7,268	100%	7,267	100%
080FH078	3,000	4,644	100%	4,560	100%	4,593	100%	4,542	100%
080FH081	1,500	7,689	100%	7,990	100%	8,399	100%	8,427	100%
081FH001	3,000	4,314	100%	4,219	100%	5,060	100%	4,978	100%
081FH005	1,500	2,645	100%	2,577	100%	3,400	100%	3,346	100%
081FH006	1,500	2,332	100%	2,278	100%	2,717	100%	2,679	100%
081FH007	1,500	2,575	100%	2,511	100%	3,159	100%	3,103	100%

081FH008	1,500	3,122	100%	3,052	100%	3,992	100%	3,925	100%
081FH009	1,500	2,981	100%	2,905	100%	3,799	100%	3,733	100%
081FH010	1,500	3,202	100%	3,138	100%	3,955	100%	3,895	100%
081FH011	3,000	3,776	100%	3,688	100%	4,905	100%	4,810	100%
081FH012	3,000	4,110	100%	4,032	100%	5,143	100%	5,063	100%
081FH013	1,500	3,884	100%	3,811	100%	4,573	100%	4,516	100%
081FH014	1,500	3,949	100%	3,880	100%	4,533	100%	4,475	100%
081FH015	1,500	4,484	100%	4,413	100%	5,163	100%	5,101	100%
081FH016	1,500	4,428	100%	4,361	100%	5,048	100%	4,995	100%
081FH017	1,500	3,453	100%	3,402	100%	3,737	100%	3,702	100%
081FH018	1,500	3,563	100%	3,514	100%	3,856	100%	3,823	100%
081FH019	1,500	3,814	100%	3,760	100%	4,179	100%	4,141	100%
081FH020	1,500	4,402	100%	4,338	100%	4,968	100%	4,922	100%
081FH021	1,500	4,335	100%	4,274	100%	4,852	100%	4,808	100%
081FH022	1,500	4,166	100%	4,108	100%	4,589	100%	4,545	100%
081FH023	1,500	3,818	100%	3,761	100%	4,207	100%	4,166	100%
081FH024	1,500	4,266	100%	4,208	100%	4,712	100%	4,669	100%
081FH025	3,000	3,564	100%	3,504	100%	4,053	100%	4,004	100%
081FH027	3,000	3,606	100%	3,535	100%	4,356	100%	4,295	100%
081FH029	3,000	3,384	100%	3,318	100%	4,060	100%	3,998	100%
081FH089	3,000	3,610	100%	3,537	100%	4,385	100%	4,324	100%
081FH090	1,500	4,574	100%	4,502	100%	5,264	100%	5,201	100%
081FH091	1,500	4,596	100%	4,523	100%	5,292	100%	5,229	100%
081FH092	3,000	4,368	100%	4,270	100%	5,328	100%	5,245	100%
081FH093	3,000	4,033	100%	3,950	100%	5,088	100%	5,004	100%
081FH094	3,000	3,877	100%	3,796	100%	4,992	100%	4,901	100%
081FH095	1,500	3,192	100%	3,122	100%	3,985	100%	3,916	100%
081FH096	1,500	3,589	100%	3,503	100%	4,571	100%	4,474	100%
081FH097	1,500	3,744	100%	3,653	100%	4,840	100%	4,739	100%
081FH098	1,500	3,458	100%	3,392	100%	4,103	100%	4,043	100%
081FH099	1,500	3,686	100%	3,616	100%	4,375	100%	4,314	100%
081FH100	1,500	3,645	100%	3,569	100%	4,478	100%	4,409	100%
081FH101	3,000	3,915	100%	3,832	100%	5,078	100%	4,988	100%
081FH102	1,500	4,234	100%	4,170	100%	4,713	100%	4,666	100%
081FH103	1,500	3,952	100%	3,893	100%	4,352	100%	4,309	100%
081FH104	1,500	4,308	100%	4,242	100%	4,825	100%	4,777	100%
081FH105	1,500	4,704	100%	4,629	100%	5,402	100%	5,342	100%
081FH106	1,500	4,180	100%	4,107	100%	4,738	100%	4,684	100%
081FH107	1,500	4,231	100%	4,159	100%	4,810	100%	4,758	100%
081FH108	1,500	3,931	100%	3,862	100%	4,443	100%	4,388	100%
081FH109	1,500	3,489	100%	3,434	100%	3,899	100%	3,856	100%
081FH110	1,500	3,717	100%	3,652	100%	4,188	100%	4,138	100%
081FH111	1,500	3,596	100%	3,540	100%	3,988	100%	3,946	100%
081FH112	1,500	3,741	100%	3,675	100%	4,208	100%	4,158	100%

081FH113	1,500	3,004	100%	2,934	100%	3,662	100%	3,607	100%
081FH114	1,500	2,962	100%	2,892	100%	3,660	100%	3,606	100%
082FH001	3,500	4,797	100%	5,018	100%	5,315	100%	5,588	100%
082FH002	3,500	5,428	100%	5,755	100%	6,210	100%	6,656	100%
082FH003	3,500	5,391	100%	5,711	100%	6,156	100%	6,590	100%
082FH004	3,500	5,522	100%	5,866	100%	6,349	100%	6,827	100%
088FH001	3,500	3,529	100%	4,134	100%	3,923	100%	3,648	100%
088FH002	1,500	4,054	100%	4,771	100%	4,498	100%	4,148	100%
088FH003	1,500	3,944	100%	4,669	100%	4,398	100%	4,050	100%
088FH004	3,500	3,862	100%	4,864	100%	4,493	100%	4,020	100%
089FH001	1,500	8,534	100%	8,144	100%	8,138	100%	8,133	100%
089FH002	1,500	1,907	100%	1,554	100%	1,552	100%	1,550	100%
089FH003	1,500	5,379	100%	4,729	100%	4,760	100%	4,752	100%
089FH004	1,500	2,193	100%	1,804	100%	1,822	100%	1,818	100%
089FH005	1,500	3,307	100%	2,834	100%	2,825	100%	2,817	100%
089FH006	2,500	3,851	100%	4,097	100%	4,086	100%	4,076	100%
089FH007	1,500	2,296	100%	1,963	100%	1,958	100%	1,954	100%
089FH008	1,500	2,073	100%	1,694	100%	1,714	100%	1,711	100%
089FH009	1,500	3,002	100%	2,632	100%	2,625	100%	2,620	100%
089FH011	2,500	3,515	100%	2,993	100%	3,023	100%	3,018	100%
089FH012	2,500	4,670	100%	4,412	100%	4,399	100%	4,387	100%
089FH014	1,500	3,064	100%	2,732	100%	2,726	100%	2,720	100%
089FH016	1,500	4,634	100%	5,696	100%	5,683	100%	5,668	100%
089FH018	1,500	2,722	100%	2,297	100%	2,407	100%	2,403	100%
089FH020	1,500	1,668	100%	5,761	100%	5,757	100%	5,741	100%
089FH021	1,500	4,738	100%	4,893	100%	4,878	100%	4,864	100%
089FH023	1,500	2,900	100%	2,916	100%	2,931	100%	2,924	100%
089FH028	1,500	2,544	100%	2,201	100%	2,429	100%	2,424	100%
089FH057	3,500	4,425	100%	4,183	100%	4,177	100%	4,171	100%
089FH059	3,500	4,872	100%	4,736	100%	4,715	100%	4,699	100%
089FH088	1,500	4,242	100%	5,114	100%	4,770	100%	4,336	100%
090FH002	1,500	5,003	100%	4,546	100%	4,515	100%	4,489	100%
090FH003	3,000	5,108	100%	4,710	100%	4,667	100%	4,634	100%
090FH004	1,500	2,551	100%	2,175	100%	2,161	100%	2,149	100%
090FH005	1,500	4,712	100%	4,235	100%	4,208	100%	4,185	100%
090FH008	1,500	4,093	100%	3,642	100%	3,620	100%	3,603	100%
090FH010	3,000	6,578	100%	6,254	100%	6,204	100%	6,165	100%
090FH011	2,500	4,427	100%	3,906	100%	3,889	100%	3,876	100%
090FH012	2,500	4,265	100%	3,788	100%	3,766	100%	3,748	100%
090FH013	1,500	1,972	100%	1,687	100%	1,679	100%	1,672	100%
090FH014	1,500	2,668	100%	2,349	100%	2,334	100%	2,322	100%
090FH015	1,500	2,483	100%	2,180	100%	2,168	100%	2,159	100%
090FH017	2,500	2,564	100%	2,193	88%	2,183	87%	2,176	87%
090FH018	2,500	2,944	100%	2,523	100%	2,516	100%	2,511	100%

090FH019	3,000	9,135	100%	9,367	100%	9,271	100%	9,187	100%
090FH020	2,500	3,203	100%	2,822	100%	2,806	100%	2,794	100%
090FH021	3,000	5,821	100%	5,518	100%	5,470	100%	5,434	100%
090FH023	3,500	7,875	100%	7,815	100%	7,739	100%	7,675	100%
090FH024	3,000	5,479	100%	5,163	100%	5,120	100%	5,087	100%
090FH029	3,000	5,879	100%	5,743	100%	5,686	100%	5,640	100%
090FH032	1,500	7,038	100%	6,759	100%	6,726	100%	6,699	100%
090FH033	3,000	5,368	100%	5,151	100%	5,104	100%	5,068	100%
090FH035	3,000	3,624	100%	3,377	100%	3,348	100%	3,327	100%
090FH036	3,000	5,111	100%	4,701	100%	4,647	100%	4,605	100%
090FH037	3,000	4,938	100%	4,665	100%	4,597	100%	4,542	100%
090FH038	2,500	6,336	100%	6,106	100%	6,028	100%	5,962	100%
090FH041	1,500	6,028	100%	5,783	100%	5,707	100%	5,644	100%
090FH042	3,000	5,164	100%	4,877	100%	4,813	100%	4,764	100%
090FH046	1,500	6,323	100%	6,100	100%	6,030	100%	5,973	100%
090FH049	3,000	5,712	100%	5,531	100%	5,462	100%	5,407	100%
090FH050	3,500	4,555	100%	4,276	100%	4,237	100%	4,209	100%
090FH051	3,500	7,559	100%	7,535	100%	7,455	100%	7,386	100%
090FH053	1,500	2,784	100%	2,545	100%	2,520	100%	2,500	100%
090FH054	3,500	8,372	100%	8,549	100%	8,459	100%	8,380	100%
090FH055	3,500	9,449	100%	10,008	100%	9,901	100%	9,802	100%
090FH056	3,500	7,054	100%	6,970	100%	6,902	100%	6,844	100%
090FH057	3,500	4,972	100%	4,762	100%	4,718	100%	4,684	100%
090FH058	3,500	6,298	100%	6,178	100%	6,116	100%	6,065	100%
090FH059	3,500	6,783	100%	6,732	100%	6,663	100%	6,605	100%
090FH060	3,500	5,105	100%	4,910	100%	4,863	100%	4,827	100%
090FH062	1,500	2,955	100%	2,771	100%	2,745	100%	2,725	100%
090FH065	2,500	8,416	100%	8,910	100%	8,809	100%	8,714	100%
090FH067	3,000	5,624	100%	5,441	100%	5,392	100%	5,353	100%
090FH068	1,500	3,244	100%	2,951	100%	2,939	100%	2,930	100%
090FH069	3,500	3,624	100%	3,387	97%	3,358	96%	3,338	95%
090FH070	3,000	4,119	100%	3,869	100%	3,840	100%	3,819	100%
090FH072	2,500	4,657	100%	4,343	100%	4,325	100%	4,309	100%
090FH080	3,500	4,674	100%	4,491	100%	4,453	100%	4,425	100%
090FH081	3,500	9,167	100%	9,501	100%	9,496	100%	9,429	100%
090FH082	3,000	4,200	100%	4,003	100%	3,970	100%	3,946	100%
090FH083	3,000	6,946	100%	6,998	100%	6,934	100%	6,877	100%
090FH085	3,000	7,230	100%	7,323	100%	7,255	100%	7,194	100%
090FH088	3,000	4,802	100%	4,640	100%	4,601	100%	4,571	100%
090FH089	3,500	8,167	100%	7,679	100%	7,608	100%	7,543	100%
090FH091	3,500	6,242	100%	5,749	100%	5,699	100%	5,658	100%
090FH093	3,500	4,467	100%	4,257	100%	4,228	100%	4,204	100%
090FH096	3,500	10,098	100%	11,199	100%	11,080	100%	10,969	100%
090FH098	3,500	8,030	100%	8,298	100%	8,224	100%	8,152	100%

090FH101	3,500	6,711	100%	7,166	100%	7,101	100%	7,041	100%
090FH104	3,500	6,485	100%	6,541	100%	6,481	100%	6,428	100%
090FH106	3,500	7,222	100%	7,334	100%	7,273	100%	7,217	100%
090FH108	3,500	6,742	100%	6,803	100%	6,750	100%	6,702	100%
090FH109	3,500	5,543	100%	5,463	100%	5,422	100%	5,387	100%
090FH110	3,500	10,556	100%	11,999	100%	11,852	100%	11,727	100%
090FH111	3,500	7,056	100%	7,039	100%	6,969	100%	6,909	100%
090FH113	2,500	5,500	100%	5,613	100%	5,557	100%	5,511	100%
090FH115	3,500	7,646	100%	7,777	100%	7,696	100%	7,624	100%
090FH119	3,500	5,466	100%	5,356	100%	5,305	100%	5,265	100%
090FH120	2,500	2,911	100%	2,740	100%	2,716	100%	2,698	100%
090FH121	2,500	4,632	100%	4,587	100%	4,542	100%	4,507	100%
090FH122	3,500	3,816	100%	3,609	100%	3,579	100%	3,558	100%
090FH124	3,500	6,229	100%	6,168	100%	6,112	100%	6,065	100%
090FH126	3,500	5,101	100%	7,409	100%	7,336	100%	7,272	100%
090FH127	3,500	5,909	100%	8,236	100%	8,156	100%	8,085	100%
090FH129	2,500	6,540	100%	6,692	100%	6,615	100%	6,552	100%
090FH130	3,500	8,961	100%	8,819	100%	8,734	100%	8,656	100%
090FH132	3,000	6,722	100%	6,906	100%	6,827	100%	6,763	100%
090FH133	3,500	8,017	100%	8,386	100%	8,303	100%	8,228	100%
090FH134	3,500	5,635	100%	5,558	100%	5,508	100%	5,468	100%
090FH135	3,000	6,893	100%	7,119	100%	7,037	100%	6,970	100%
090FH136	3,500	7,257	100%	7,395	100%	7,323	100%	7,262	100%
090FH137	3,000	7,406	100%	7,759	100%	7,671	100%	7,599	100%
090FH138	3,500	7,962	100%	8,261	100%	8,181	100%	8,109	100%
090FH139	3,500	7,731	100%	7,919	100%	7,844	100%	7,778	100%
090FH141	3,500	7,693	100%	7,920	100%	7,843	100%	7,775	100%
090FH142	3,500	6,671	100%	6,659	100%	6,598	100%	6,546	100%
090FH143	3,500	7,188	100%	7,426	100%	7,346	100%	7,279	100%
090FH145	3,500	8,458	100%	8,953	100%	8,858	100%	8,775	100%
090FH146	3,500	9,319	100%	10,041	100%	9,938	100%	9,845	100%
090FH147	3,500	6,559	100%	6,633	100%	6,566	100%	6,511	100%
090FH148	3,500	9,981	100%	11,039	100%	10,914	100%	10,808	100%
090FH149	3,500	5,925	100%	6,171	100%	6,084	100%	6,023	100%
090FH150	3,500	7,891	100%	8,171	100%	8,092	100%	8,021	100%
090FH151	3,500	8,662	100%	9,209	100%	9,114	100%	9,028	100%
090FH152	3,500	8,891	100%	9,496	100%	9,400	100%	9,313	100%
090FH155	3,500	10,422	100%	11,722	100%	11,578	100%	11,467	100%
090FH156	3,500	7,581	100%	7,873	100%	7,795	100%	7,726	100%
090FH159	3,500	7,509	100%	7,769	100%	7,693	100%	7,627	100%
090FH160	2,500	4,077	100%	3,761	100%	3,726	100%	3,700	100%
090FH161	3,500	5,342	100%	5,133	100%	5,084	100%	5,046	100%
090FH162	2,500	4,755	100%	4,232	100%	4,213	100%	4,198	100%
090FH163	2,500	6,776	100%	6,343	100%	6,308	100%	6,280	100%

090FH164	2,500	4,870	100%	4,733	100%	4,672	100%	4,622	100%
090FH165	3,500	8,149	100%	8,457	100%	8,372	100%	8,294	100%
090FH166	3,000	4,946	100%	4,746	100%	4,701	100%	4,667	100%
090FH167	3,000	3,245	100%	2,955	99%	2,934	98%	2,919	97%
090FH168	3,500	6,253	100%	6,465	100%	6,434	100%	6,410	100%
090FH169	1,500	7,396	100%	7,331	100%	7,299	100%	7,268	100%
090FH170	2,500	4,021	100%	3,772	100%	3,748	100%	3,729	100%
090FH171	3,500	8,839	100%	9,337	100%	9,259	100%	9,182	100%
090FH172	3,500	5,096	100%	4,843	100%	4,824	100%	4,801	100%
090FH173	3,500	4,394	100%	4,140	100%	4,116	100%	4,097	100%
090FH174	3,500	7,607	100%	7,646	100%	7,574	100%	7,510	100%
090FH175	3,500	6,438	100%	6,379	100%	6,320	100%	6,271	100%
090FH176	3,500	5,839	100%	5,696	100%	5,644	100%	5,602	100%
090FH177	3,500	3,787	100%	3,503	100%	3,474	99%	3,452	99%
091FH001	3,000	5,281	100%	5,262	100%	5,195	100%	5,134	100%
091FH002	3,000	6,432	100%	6,778	100%	6,649	100%	6,571	100%
091FH004	2,500	4,928	100%	4,902	100%	4,834	100%	4,773	100%
091FH006	3,000	5,723	100%	5,830	100%	5,739	100%	5,673	100%
091FH008	1,500	4,687	100%	4,622	100%	4,565	100%	4,516	100%
091FH010	1,500	5,760	100%	5,951	100%	5,804	100%	5,711	100%
091FH013	1,500	3,267	100%	3,123	100%	3,087	100%	3,058	100%
091FH015	1,500	2,712	100%	2,524	100%	2,486	100%	2,455	100%
091FH016	2,500	4,681	100%	4,595	100%	4,545	100%	4,502	100%
091FH017	2,500	6,890	100%	7,214	100%	7,090	100%	7,011	100%
091FH018	2,500	3,304	100%	3,166	100%	3,129	100%	3,100	100%
091FH019	1,500	1,613	100%	1,522	100%	1,508	100%	1,496	100%
091FH021	2,500	3,247	100%	3,115	100%	3,081	100%	3,054	100%
091FH022	2,500	3,024	100%	2,866	100%	2,821	100%	2,785	100%
091FH023	2,500	7,999	100%	8,668	100%	8,510	100%	8,418	100%
091FH026	2,500	2,837	100%	2,721	100%	2,692	100%	2,669	100%
091FH028	3,000	6,742	100%	7,256	100%	7,155	100%	7,084	100%
091FH030	1,500	2,986	100%	3,033	100%	3,001	100%	2,977	100%
091FH031	2,500	5,444	100%	5,635	100%	5,527	100%	5,460	100%
091FH033	2,500	5,850	100%	6,070	100%	5,959	100%	5,893	100%
091FH034	3,500	4,747	100%	4,818	100%	4,739	100%	4,689	100%
091FH035	1,500	3,209	100%	3,052	100%	3,002	100%	2,958	100%
091FH038	1,500	2,257	100%	2,651	100%	2,619	100%	2,591	100%
091FH042	3,000	3,137	100%	3,015	100%	2,972	99%	2,938	98%
091FH048	3,000	4,079	100%	4,192	100%	4,132	100%	4,083	100%
091FH052	3,000	4,127	100%	4,327	100%	4,264	100%	4,214	100%
091FH057	2,500	3,059	100%	3,103	100%	3,059	100%	3,026	100%
091FH062	3,000	3,237	100%	3,107	100%	3,073	100%	3,047	100%
091FH064	1,500	8,623	100%	9,631	100%	9,484	100%	9,385	100%
091FH066	3,000	5,150	100%	5,169	100%	5,105	100%	5,052	100%

091FH068	3,500	5,828	100%	5,964	100%	5,885	100%	5,820	100%
091FH069	3,000	4,947	100%	5,089	100%	5,026	100%	4,975	100%
091FH070	3,000	4,484	100%	4,421	100%	4,369	100%	4,330	100%
091FH071	3,500	3,867	100%	3,803	100%	3,754	100%	3,718	100%
091FH073	3,000	4,498	100%	4,423	100%	4,373	100%	4,336	100%
091FH075	3,500	4,680	100%	4,661	100%	4,606	100%	4,565	100%
091FH076	3,000	7,030	100%	7,293	100%	7,210	100%	7,140	100%
091FH078	3,000	7,421	100%	7,797	100%	7,707	100%	7,631	100%
091FH079	3,500	3,797	100%	3,685	100%	3,646	100%	3,617	100%
091FH082	3,000	3,549	100%	3,584	100%	3,537	100%	3,501	100%
091FH083	3,000	3,929	100%	4,124	100%	4,056	100%	4,003	100%
091FH084	3,000	3,546	100%	4,528	100%	4,456	100%	4,400	100%
091FH085	3,000	3,172	100%	3,587	100%	3,510	100%	3,452	100%
091FH088	3,000	3,091	100%	3,227	100%	3,177	100%	3,138	100%
091FH094	1,500	2,999	100%	3,730	100%	3,661	100%	3,610	100%
091FH105	3,500	4,615	100%	6,498	100%	6,356	100%	6,267	100%
091FH106	1,500	7,584	100%	8,221	100%	8,060	100%	7,965	100%
091FH107	3,000	4,222	100%	4,175	100%	4,122	100%	4,083	100%
091FH108	3,000	3,157	100%	3,000	100%	2,957	99%	2,921	97%
091FH109	1,500	5,451	100%	5,468	100%	5,398	100%	5,336	100%
091FH110	2,500	4,370	100%	4,293	100%	4,239	100%	4,193	100%
091FH111	3,000	5,130	100%	5,201	100%	5,118	100%	5,053	100%
091FH112	2,500	4,749	100%	4,682	100%	4,623	100%	4,572	100%
091FH113	3,000	3,438	100%	3,301	100%	3,255	100%	3,217	100%
091FH114	2,500	4,275	100%	4,181	100%	4,132	100%	4,091	100%
091FH115	2,500	2,797	100%	2,614	100%	2,576	100%	2,546	100%
091FH116	1,500	3,425	100%	3,297	100%	3,262	100%	3,234	100%
091FH117	3,000	4,147	100%	4,104	100%	4,057	100%	4,021	100%
091FH118	2,500	4,148	100%	4,100	100%	4,052	100%	4,014	100%
091FH120	3,000	4,796	100%	4,838	100%	4,777	100%	4,729	100%
091FH121	3,500	4,773	100%	7,736	100%	7,517	100%	7,407	100%
091FH122	3,500	4,040	100%	6,149	100%	5,995	100%	5,909	100%
092FH002	1,500	3,131	100%	3,088	100%	3,050	100%	3,009	100%
092FH003	1,500	5,407	100%	5,588	100%	5,488	100%	5,426	100%
092FH004	1,500	1,613	100%	1,539	100%	1,520	100%	1,503	100%
092FH005	1,500	1,601	100%	1,533	100%	1,515	100%	1,500	100%
092FH007	1,500	7,270	100%	7,941	100%	7,811	100%	7,735	100%
092FH008	1,500	1,762	100%	1,706	100%	1,688	100%	1,672	100%
092FH010	1,500	2,398	100%	2,359	100%	2,334	100%	2,311	100%
092FH012	3,000	7,088	100%	7,692	100%	7,573	100%	7,503	100%
092FH013	1,500	6,667	100%	7,154	100%	7,034	100%	6,963	100%
092FH014	1,500	2,749	100%	2,725	100%	2,688	100%	2,655	100%
092FH015	3,000	3,838	100%	3,856	100%	3,819	100%	3,783	100%
092FH016	1,500	5,629	100%	5,957	100%	5,842	100%	5,772	100%

092FH017	1,500	6,871	100%	7,542	100%	7,406	100%	7,328	100%
092FH018	1,500	3,318	100%	3,370	100%	3,324	100%	3,284	100%
092FH019	1,500	6,426	100%	6,999	100%	6,842	100%	6,751	100%
092FH020	1,500	3,194	100%	3,228	100%	3,186	100%	3,149	100%
092FH021	1,500	2,945	100%	2,940	100%	2,905	100%	2,873	100%
092FH022	1,500	1,909	100%	1,869	100%	1,840	100%	1,817	100%
092FH023	1,500	2,275	100%	2,249	100%	2,210	100%	2,177	100%
092FH024	1,500	3,345	100%	3,363	100%	3,321	100%	3,282	100%
092FH028	1,500	2,425	100%	2,396	100%	2,364	100%	2,338	100%
092FH031	3,000	3,132	100%	3,026	100%	2,990	100%	2,967	99%
092FH032	1,500	2,079	100%	2,006	100%	1,981	100%	1,958	100%
092FH033	1,500	2,065	100%	1,995	100%	1,972	100%	1,949	100%
092FH034	1,500	2,190	100%	2,123	100%	2,099	100%	2,075	100%
092FH038	1,500	1,977	100%	1,906	100%	1,883	100%	1,862	100%
092FH039	1,500	1,920	100%	1,853	100%	1,832	100%	1,812	100%
092FH040	1,500	2,365	100%	2,381	100%	2,375	100%	2,342	100%
092FH041	1,500	1,529	100%	1,487	99%	1,473	98%	1,461	97%
092FH043	1,500	1,943	100%	1,901	100%	1,883	100%	1,868	100%
092FH044	1,500	2,059	100%	2,018	100%	2,002	100%	1,986	100%
092FH045	1,500	2,468	100%	2,413	100%	2,386	100%	2,360	100%
092FH046	1,500	2,028	100%	1,985	100%	1,967	100%	1,951	100%
092FH050	1,500	3,725	100%	3,715	100%	3,684	100%	3,654	100%
092FH064	1,500	1,673	100%	1,683	100%	1,654	100%	1,635	100%
092FH067	1,500	1,541	100%	1,547	100%	1,525	100%	1,508	100%
092FH068	1,500	1,580	100%	1,583	100%	1,565	100%	1,550	100%
092FH070	1,500	1,518	100%	1,545	100%	1,517	100%	1,497	100%
092FH073	1,500	1,804	100%	1,854	100%	1,826	100%	1,805	100%
092FH075	1,500	1,786	100%	1,831	100%	1,806	100%	1,788	100%
092FH077	1,500	1,975	100%	2,051	100%	2,024	100%	2,003	100%
092FH078	3,500	3,948	100%	4,784	100%	4,698	100%	4,636	100%
092FH084	3,500	3,562	100%	4,401	100%	4,315	100%	4,256	100%
092FH087	1,500	2,367	100%	2,400	100%	2,379	100%	2,362	100%
092FH089	1,500	2,625	100%	2,671	100%	2,639	100%	2,616	100%
092FH091	1,500	2,277	100%	2,297	100%	2,282	100%	2,269	100%
092FH092	1,500	2,540	100%	2,595	100%	2,566	100%	2,542	100%
092FH093	1,500	1,847	100%	1,856	100%	1,837	100%	1,821	100%
092FH094	1,500	2,474	100%	2,515	100%	2,480	100%	2,452	100%
092FH095	3,000	3,113	100%	3,165	100%	3,130	100%	3,103	100%
092FH096	1,500	2,842	100%	2,902	100%	2,868	100%	2,843	100%
092FH097	1,500	1,887	100%	1,895	100%	1,878	100%	1,865	100%
092FH098	2,500	3,260	100%	3,352	100%	3,313	100%	3,283	100%
092FH099	1,500	3,273	100%	3,379	100%	3,337	100%	3,305	100%
092FH100	1,500	1,975	100%	1,988	100%	1,972	100%	1,959	100%
092FH101	1,500	1,949	100%	1,969	100%	1,947	100%	1,930	100%

092FH102	1,500	3,316	100%	3,441	100%	3,396	100%	3,362	100%
092FH104	1,500	1,998	100%	2,023	100%	2,001	100%	1,984	100%
092FH106	1,500	3,088	100%	3,214	100%	3,197	100%	3,168	100%
092FH107	3,000	3,102	100%	3,202	100%	3,185	100%	3,158	100%
092FH112	3,000	3,018	100%	3,040	100%	3,025	100%	3,001	100%
092FH115	3,000	3,001	100%	3,150	100%	3,094	100%	3,049	100%
092FH116	1,500	2,682	100%	2,803	100%	2,767	100%	2,740	100%
092FH117	1,500	2,480	100%	2,535	100%	2,505	100%	2,481	100%
092FH118	1,500	2,429	100%	2,364	100%	2,335	100%	2,307	100%
092FH119	1,500	2,587	100%	2,526	100%	2,495	100%	2,464	100%
092FH120	1,500	2,101	100%	2,029	100%	2,004	100%	1,980	100%
093FH001	2,500	4,015	100%	3,963	100%	3,957	100%	3,905	100%
093FH002	2,500	4,341	100%	4,302	100%	4,295	100%	4,241	100%
093FH004	3,000	3,116	100%	3,415	100%	3,410	100%	3,373	100%
093FH005	2,500	3,751	100%	3,728	100%	3,722	100%	3,676	100%
093FH007	2,500	2,940	100%	3,374	100%	3,368	100%	3,333	100%
093FH009	2,500	3,209	100%	3,189	100%	3,184	100%	3,150	100%
093FH010	1,500	2,937	100%	2,926	100%	2,921	100%	2,892	100%
093FH011	1,500	3,452	100%	3,747	100%	3,742	100%	3,699	100%
093FH012	1,500	3,500	100%	3,879	100%	3,873	100%	3,828	100%
093FH013	2,500	2,889	100%	2,906	100%	2,901	100%	2,868	100%
093FH014	2,500	2,582	100%	2,562	100%	2,557	100%	2,529	100%
093FH015	3,000	3,527	100%	4,030	100%	4,024	100%	3,977	100%
093FH017	2,500	2,639	100%	2,643	100%	2,637	100%	2,601	100%
093FH026	2,500	2,795	100%	2,756	100%	2,751	100%	2,719	100%
093FH027	2,500	2,987	100%	2,951	100%	2,946	100%	2,913	100%
093FH028	2,500	2,864	100%	2,824	100%	2,819	100%	2,786	100%
093FH029	2,500	2,645	100%	2,605	100%	2,599	100%	2,565	100%
093FH030	2,500	3,018	100%	2,983	100%	2,978	100%	2,943	100%
093FH031	3,000	3,156	100%	3,127	100%	3,123	100%	3,087	100%
093FH033	1,500	5,589	100%	5,606	100%	5,607	100%	5,608	100%
093FH034	1,500	2,869	100%	2,868	100%	2,871	100%	2,864	100%
093FH035	1,500	2,930	100%	2,930	100%	2,933	100%	2,926	100%
093FH036	1,500	3,261	100%	3,260	100%	3,263	100%	3,258	100%
093FH037	1,500	2,048	100%	2,048	100%	2,050	100%	2,047	100%
093FH038	1,500	5,483	100%	5,502	100%	5,504	100%	5,505	100%
093FH039	1,500	3,741	100%	3,743	100%	3,744	100%	3,742	100%
093FH040	1,500	4,605	100%	4,619	100%	4,622	100%	4,622	100%
093FH041	1,500	5,446	100%	5,480	100%	5,484	100%	5,489	100%
093FH042	1,500	4,803	100%	4,821	100%	4,823	100%	4,824	100%
093FH043	2,500	5,268	100%	5,296	100%	5,300	100%	5,303	100%
093FH044	2,500	2,887	100%	2,886	100%	2,889	100%	2,884	100%
093FH049	3,000	3,039	100%	3,023	100%	3,017	100%	2,995	100%
093FH050	3,000	3,326	100%	3,301	100%	3,291	100%	3,268	100%

093FH053	3,000	3,237	100%	3,216	100%	3,207	100%	3,184	100%
093FH055	1,500	2,443	100%	2,443	100%	2,444	100%	2,441	100%
093FH056	1,500	4,053	100%	4,030	100%	4,019	100%	3,993	100%
093FH057	1,500	4,173	100%	4,152	100%	4,137	100%	4,104	100%
093FH059	1,500	3,702	100%	3,700	100%	3,700	100%	3,694	100%
093FH060	1,500	2,384	100%	2,375	100%	2,375	100%	2,366	100%
093FH061	1,500	3,063	100%	3,030	100%	3,018	100%	2,993	100%
093FH062	1,500	4,077	100%	4,061	100%	4,042	100%	4,009	100%
093FH063	1,500	2,216	100%	2,213	100%	2,213	100%	2,206	100%
093FH064	1,500	2,322	100%	2,316	100%	2,317	100%	2,310	100%
093FH065	1,500	2,666	100%	2,665	100%	2,667	100%	2,664	100%
093FH066	1,500	3,587	100%	3,562	100%	3,548	100%	3,522	100%
093FH067	1,500	3,280	100%	3,253	100%	3,242	100%	3,220	100%
093FH068	1,500	2,281	100%	2,281	100%	2,283	100%	2,280	100%
093FH070	1,500	2,269	100%	2,261	100%	2,261	100%	2,254	100%
093FH071	1,500	2,452	100%	2,452	100%	2,454	100%	2,450	100%
093FH072	1,500	3,164	100%	3,138	100%	3,128	100%	3,107	100%
093FH073	1,500	2,626	100%	2,626	100%	2,628	100%	2,625	100%
093FH074	1,500	2,321	100%	2,313	100%	2,313	100%	2,306	100%
093FH075	1,500	3,544	100%	3,518	100%	3,507	100%	3,483	100%
093FH076	1,500	3,928	100%	3,932	100%	3,931	100%	3,927	100%
093FH077	1,500	4,450	100%	4,457	100%	4,458	100%	4,455	100%
093FH078	2,500	4,763	100%	4,793	100%	4,797	100%	4,800	100%
093FH079	2,500	3,866	100%	3,878	100%	3,881	100%	3,880	100%
093FH080	1,500	4,111	100%	4,113	100%	4,113	100%	4,108	100%
093FH082	1,500	2,773	100%	2,772	100%	2,775	100%	2,771	100%
093FH083	2,500	5,286	100%	5,326	100%	5,330	100%	5,335	100%
093FH084	1,500	2,717	100%	2,716	100%	2,719	100%	2,715	100%
093FH086	2,500	5,017	100%	5,055	100%	5,060	100%	5,065	100%
093FH087	1,500	5,250	100%	5,302	100%	5,308	100%	5,316	100%
093FH088	1,500	2,189	100%	2,188	100%	2,191	100%	2,187	100%
093FH089	1,500	3,787	100%	3,801	100%	3,803	100%	3,803	100%
093FH091	3,000	3,097	100%	3,097	100%	3,100	100%	3,095	100%
093FH092	1,500	5,576	100%	5,619	100%	5,622	100%	5,627	100%
093FH093	3,000	3,286	100%	3,286	100%	3,288	100%	3,284	100%
093FH095	1,500	3,682	100%	3,696	100%	3,699	100%	3,698	100%
093FH096	1,500	2,097	100%	2,097	100%	2,100	100%	2,096	100%
093FH098	3,000	4,268	100%	4,274	100%	4,275	100%	4,272	100%
093FH100	1,500	4,898	100%	4,914	100%	4,915	100%	4,914	100%
093FH101	1,500	3,633	100%	3,641	100%	3,643	100%	3,641	100%
093FH102	1,500	2,018	100%	2,018	100%	2,020	100%	2,017	100%
093FH103	1,500	3,284	100%	3,286	100%	3,287	100%	3,285	100%
093FH104	1,500	4,059	100%	4,080	100%	4,083	100%	4,084	100%
093FH105	1,500	2,893	100%	2,893	100%	2,895	100%	2,891	100%

093FH107	1,500	2,676	100%	2,676	100%	2,678	100%	2,674	100%
093FH108	1,500	2,709	100%	2,709	100%	2,712	100%	2,707	100%
093FH109	1,500	4,980	100%	4,998	100%	5,000	100%	4,999	100%
093FH110	3,000	3,216	100%	3,716	100%	3,711	100%	3,669	100%
093FH111	1,500	6,897	100%	7,124	100%	7,118	100%	7,127	100%
093FH112	3,000	5,678	100%	5,684	100%	5,684	100%	5,683	100%
093FH113	1,500	3,875	100%	3,875	100%	3,876	100%	3,872	100%
093FH114	1,500	5,620	100%	5,631	100%	5,631	100%	5,630	100%
093FH115	1,500	5,834	100%	5,847	100%	5,847	100%	5,847	100%
093FH117	1,500	6,290	100%	6,343	100%	6,343	100%	6,346	100%
093FH118	1,500	5,974	100%	5,991	100%	5,991	100%	5,993	100%
093FH119	1,500	6,279	100%	6,324	100%	6,325	100%	6,327	100%
093FH120	3,000	3,904	100%	3,873	100%	3,866	100%	3,824	100%
093FH121	3,000	4,188	100%	4,187	100%	4,189	100%	4,183	100%
093FH122	3,000	4,810	100%	4,809	100%	4,810	100%	4,802	100%
093FH123	3,000	5,442	100%	5,441	100%	5,441	100%	5,439	100%
093FH124	3,000	3,463	100%	3,435	100%	3,424	100%	3,397	100%
093FH126	1,500	5,031	100%	5,037	100%	5,037	100%	5,036	100%
093FH129	2,500	2,711	100%	2,675	100%	2,670	100%	2,639	100%
093FH130	2,500	2,678	100%	2,641	100%	2,636	100%	2,604	100%
093FH131	2,500	2,968	100%	2,933	100%	2,928	100%	2,895	100%
093FH135	2,500	2,881	100%	2,845	100%	2,840	100%	2,808	100%
093FH136	2,500	2,572	100%	2,543	100%	2,538	100%	2,508	100%
093FH137	3,000	7,250	100%	7,672	100%	7,665	100%	7,695	100%
093FH138	1,500	3,041	100%	3,021	100%	3,017	100%	2,987	100%
093FH139	2,500	2,810	100%	2,773	100%	2,768	100%	2,735	100%
093FH140	2,500	2,691	100%	2,654	100%	2,649	100%	2,618	100%
094FH001	1,500	4,053	100%	4,057	100%	4,056	100%	4,054	100%
094FH002	1,500	4,462	100%	4,470	100%	4,469	100%	4,468	100%
094FH003	1,500	4,757	100%	4,768	100%	4,767	100%	4,766	100%
094FH004	1,500	5,316	100%	5,335	100%	5,333	100%	5,335	100%
094FH005	1,500	6,379	100%	6,465	100%	6,463	100%	6,470	100%
094FH006	2,500	6,254	100%	6,302	100%	6,301	100%	6,308	100%
094FH007	2,500	2,835	100%	2,834	100%	2,834	100%	2,828	100%
094FH008	2,500	5,091	100%	5,116	100%	5,111	100%	5,112	100%
094FH009	2,500	5,082	100%	5,102	100%	5,097	100%	5,098	100%
094FH010	2,500	2,774	100%	2,773	100%	2,773	100%	2,766	100%
094FH011	3,000	4,518	100%	4,532	100%	4,528	100%	4,527	100%
094FH012	2,500	5,665	100%	5,713	100%	5,709	100%	5,717	100%
094FH013	2,500	6,880	100%	7,264	100%	7,271	100%	7,306	100%
094FH014	1,500	5,434	100%	5,480	100%	5,482	100%	5,490	100%
094FH015	1,500	5,547	100%	5,597	100%	5,599	100%	5,609	100%
094FH016	1,500	4,486	100%	4,510	100%	4,512	100%	4,515	100%
094FH017	1,500	6,320	100%	6,419	100%	6,422	100%	6,440	100%

094FH018	1,500	6,211	100%	6,293	100%	6,296	100%	6,314	100%
094FH019	1,500	6,017	100%	6,090	100%	6,094	100%	6,110	100%
094FH021	1,500	4,510	100%	4,538	100%	4,541	100%	4,545	100%
094FH022	1,500	5,674	100%	5,734	100%	5,738	100%	5,751	100%
094FH023	1,500	6,435	100%	6,573	100%	6,579	100%	6,599	100%
094FH024	1,500	6,022	100%	6,105	100%	6,110	100%	6,128	100%
094FH025	3,500	6,452	100%	6,879	100%	7,052	100%	7,229	100%
094FH026	1,500	6,546	100%	6,719	100%	6,727	100%	6,748	100%
094FH027	3,500	5,416	100%	5,632	100%	5,712	100%	5,795	100%
094FH029	3,500	6,499	100%	6,901	100%	7,016	100%	7,145	100%
094FH030	3,500	4,261	100%	5,005	100%	5,059	100%	5,122	100%
094FH032	3,500	8,198	100%	9,760	100%	9,953	100%	10,398	100%
094FH034	2,500	6,873	100%	7,230	100%	7,239	100%	7,272	100%
094FH035	1,500	5,511	100%	5,557	100%	5,558	100%	5,566	100%
094FH036	1,500	6,413	100%	6,534	100%	6,538	100%	6,553	100%
094FH037	1,500	6,980	100%	7,305	100%	7,316	100%	7,343	100%
094FH038	3,000	6,844	100%	7,144	100%	7,155	100%	7,184	100%
094FH039	3,000	6,002	100%	6,124	100%	6,135	100%	6,160	100%
094FH040	3,000	7,176	100%	7,690	100%	7,705	100%	7,766	100%
094FH041	3,000	5,825	100%	5,938	100%	5,948	100%	5,970	100%
094FH042	2,500	6,213	100%	6,330	100%	6,338	100%	6,360	100%
094FH043	1,500	6,986	100%	7,351	100%	7,365	100%	7,398	100%
094FH045	1,500	6,855	100%	7,184	100%	7,199	100%	7,233	100%
094FH046	1,500	2,815	100%	2,823	100%	2,825	100%	2,824	100%
094FH047	1,500	5,374	100%	5,485	100%	5,498	100%	5,519	100%
094FH048	1,500	6,806	100%	7,147	100%	7,167	100%	7,207	100%
094FH049	1,500	6,462	100%	6,636	100%	6,646	100%	6,674	100%
094FH050	1,500	4,666	100%	4,726	100%	4,734	100%	4,743	100%
094FH051	1,500	6,556	100%	6,819	100%	6,837	100%	6,876	100%
094FH052	1,500	4,185	100%	4,237	100%	4,245	100%	4,252	100%
094FH053	1,500	4,770	100%	4,857	100%	4,868	100%	4,882	100%
094FH054	1,500	3,109	100%	3,126	100%	3,129	100%	3,128	100%
094FH055	1,500	5,735	100%	5,846	100%	5,858	100%	5,882	100%
094FH056	1,500	7,466	100%	8,046	100%	8,062	100%	8,145	100%
094FH057	1,500	5,061	100%	5,157	100%	5,169	100%	5,187	100%
094FH058	1,500	8,604	100%	10,082	100%	10,139	100%	10,405	100%
094FH059	1,500	7,124	100%	7,612	100%	7,639	100%	7,690	100%
094FH060	1,500	4,300	100%	4,359	100%	4,366	100%	4,374	100%
094FH061	1,500	6,166	100%	6,349	100%	6,365	100%	6,402	100%
094FH062	1,500	6,302	100%	6,514	100%	6,532	100%	6,574	100%
094FH063	1,500	1,805	100%	1,805	100%	1,809	100%	1,804	100%
094FH064	1,500	6,228	100%	6,384	100%	6,399	100%	6,433	100%
094FH065	1,500	6,763	100%	7,151	100%	7,174	100%	7,223	100%
094FH066	1,500	5,445	100%	5,566	100%	5,579	100%	5,603	100%

094FH067	1,500	6,120	100%	6,296	100%	6,312	100%	6,348	100%
094FH068	1,500	4,817	100%	4,830	100%	4,829	100%	4,829	100%
094FH070	1,500	7,111	100%	7,300	100%	7,383	100%	7,394	100%
094FH071	1,500	5,047	100%	5,049	100%	5,048	100%	5,046	100%
094FH072	1,500	4,679	100%	4,682	100%	4,677	100%	4,676	100%
094FH073	1,500	5,084	100%	5,094	100%	5,089	100%	5,090	100%
094FH074	1,500	3,089	100%	3,087	100%	3,086	100%	3,080	100%
094FH075	1,500	3,995	100%	3,998	100%	3,994	100%	3,992	100%
094FH076	1,500	6,059	100%	6,093	100%	6,091	100%	6,096	100%
094FH077	1,500	4,006	100%	4,010	100%	4,007	100%	4,004	100%
094FH078	1,500	6,567	100%	6,710	100%	6,714	100%	6,723	100%
094FH079	1,500	6,449	100%	6,558	100%	6,560	100%	6,569	100%
094FH080	1,500	5,499	100%	5,522	100%	5,517	100%	5,521	100%
094FH081	1,500	6,696	100%	6,907	100%	6,907	100%	6,923	100%
094FH082	1,500	8,856	100%	10,403	100%	10,426	100%	10,681	100%
094FH084	1,500	4,814	100%	4,839	100%	4,839	100%	4,842	100%
094FH085	1,500	5,731	100%	5,779	100%	5,778	100%	5,788	100%
094FH086	1,500	6,055	100%	6,114	100%	6,113	100%	6,125	100%
094FH087	1,500	6,075	100%	6,141	100%	6,141	100%	6,155	100%
094FH088	1,500	6,798	100%	7,028	100%	7,034	100%	7,051	100%
094FH090	1,500	5,738	100%	5,784	100%	5,782	100%	5,790	100%
094FH091	1,500	4,591	100%	4,613	100%	4,611	100%	4,613	100%
094FH092	1,500	4,890	100%	4,912	100%	4,910	100%	4,912	100%
094FH093	1,500	4,755	100%	4,773	100%	4,771	100%	4,772	100%
094FH094	1,500	5,818	100%	5,853	100%	5,849	100%	5,856	100%
094FH095	1,500	6,129	100%	6,171	100%	6,170	100%	6,177	100%
094FH096	1,500	5,784	100%	5,824	100%	5,821	100%	5,829	100%
094FH097	1,500	4,275	100%	4,287	100%	4,286	100%	4,286	100%
094FH098	1,500	5,181	100%	5,201	100%	5,197	100%	5,199	100%
094FH101	2,500	6,039	100%	6,123	100%	6,130	100%	6,147	100%
094FH102	2,500	5,262	100%	5,318	100%	5,324	100%	5,333	100%
094FH103	1,500	4,093	100%	4,100	100%	4,097	100%	4,096	100%
094FH104	1,500	5,996	100%	6,037	100%	6,033	100%	6,041	100%
094FH105	1,500	6,717	100%	6,910	100%	6,916	100%	6,928	100%
094FH106	1,500	6,494	100%	6,623	100%	6,625	100%	6,636	100%
094FH107	1,500	5,237	100%	5,264	100%	5,259	100%	5,262	100%
094FH108	1,500	4,931	100%	4,953	100%	4,949	100%	4,950	100%
094FH109	1,500	6,551	100%	6,694	100%	6,697	100%	6,708	100%
094FH110	1,500	5,998	100%	6,042	100%	6,038	100%	6,047	100%
094FH111	1,500	6,925	100%	7,188	100%	7,192	100%	7,211	100%
094FH112	1,500	6,487	100%	6,616	100%	6,618	100%	6,628	100%
094FH113	1,500	3,582	100%	3,585	100%	3,582	100%	3,579	100%
094FH118	500	7,129	100%	7,226	100%	7,722	100%	7,713	100%
094FH119	1,500	5,808	100%	5,731	100%	6,542	100%	6,490	100%

094FH127	2,500	5,301	100%	5,353	100%	5,359	100%	5,368	100%
094FH242	3,000	5,570	100%	5,657	100%	5,666	100%	5,683	100%
094FH243	3,000	5,170	100%	5,234	100%	5,242	100%	5,254	100%
094FH244	3,000	4,547	100%	4,585	100%	4,591	100%	4,597	100%
094FH245	3,500	4,417	100%	5,226	100%	5,281	100%	5,347	100%
094FH246	1,500	6,164	100%	6,290	100%	6,303	100%	6,331	100%
094FH247	3,500	3,573	100%	3,794	100%	3,819	100%	3,845	100%
094FH248	3,500	5,014	100%	5,360	100%	5,427	100%	5,501	100%
094FH249	3,500	3,763	100%	3,837	100%	3,866	100%	3,894	100%
095FH001	3,500	8,333	100%	10,180	100%	10,774	100%	11,780	100%
095FH002	3,500	8,235	100%	10,032	100%	10,690	100%	11,783	100%
095FH003	3,500	8,976	100%	11,774	100%	12,850	100%	14,944	100%
095FH004	3,500	5,013	100%	5,379	100%	5,472	100%	5,566	100%
095FH005	3,500	8,700	100%	11,121	100%	12,011	100%	13,656	100%
095FH006	3,500	7,032	100%	7,781	100%	8,195	100%	8,620	100%
095FH007	3,500	5,284	100%	5,511	100%	5,646	100%	5,776	100%
095FH008	3,500	8,493	100%	10,632	100%	11,382	100%	12,736	100%
095FH009	3,500	5,756	100%	6,056	100%	6,229	100%	6,402	100%
095FH010	3,500	8,053	100%	9,659	100%	10,549	100%	11,900	100%
095FH011	3,500	5,573	100%	5,856	100%	6,152	100%	6,431	100%
095FH012	3,500	6,957	100%	7,723	100%	8,419	100%	9,151	100%
095FH013	3,500	5,367	100%	5,631	100%	5,921	100%	6,189	100%
095FH014	3,500	6,579	100%	7,165	100%	7,799	100%	8,445	100%
095FH015	3,500	5,407	100%	5,690	100%	6,027	100%	6,332	100%
095FH016	3,500	6,266	100%	6,730	100%	7,350	100%	7,940	100%
095FH017	3,500	5,175	100%	5,436	100%	5,789	100%	6,087	100%
095FH018	3,500	5,382	100%	5,649	100%	5,900	100%	6,133	100%
095FH019	3,500	6,271	100%	6,679	100%	7,123	100%	7,576	100%
095FH020	3,500	6,231	100%	6,637	100%	7,093	100%	7,570	100%
095FH021	3,500	6,314	100%	6,767	100%	7,293	100%	7,861	100%
095FH022	3,500	5,151	100%	5,521	100%	5,625	100%	5,729	100%
095FH023	3,500	5,178	100%	5,499	100%	5,609	100%	5,716	100%
095FH024	3,500	6,377	100%	6,901	100%	7,136	100%	7,375	100%
095FH025	3,500	5,580	100%	5,865	100%	6,021	100%	6,174	100%
095FH026	3,500	3,507	100%	3,609	100%	3,641	100%	3,671	100%
095FH027	3,500	5,064	100%	5,315	100%	5,601	100%	5,861	100%
095FH028	3,500	5,207	100%	5,483	100%	5,801	100%	6,094	100%
095FH029	3,500	4,479	100%	4,655	100%	4,849	100%	5,020	100%
095FH030	3,500	4,732	100%	4,942	100%	5,178	100%	5,387	100%
095FH031	3,500	5,243	100%	5,528	100%	5,855	100%	6,158	100%
095FH032	3,500	5,067	100%	5,318	100%	5,605	100%	5,866	100%
095FH033	3,500	5,298	100%	5,578	100%	5,900	100%	6,196	100%
095FH034	3,500	4,750	100%	4,929	100%	5,114	100%	5,280	100%
095FH035	3,500	5,152	100%	5,388	100%	5,653	100%	5,893	100%

095FH036	3,500	5,104	100%	5,332	100%	5,590	100%	5,822	100%
095FH037	3,500	5,342	100%	5,607	100%	5,909	100%	6,185	100%
095FH038	3,500	5,754	100%	6,085	100%	6,460	100%	6,817	100%
095FH039	3,500	5,217	100%	5,460	100%	5,723	100%	5,965	100%
095FH040	3,500	5,286	100%	5,533	100%	5,798	100%	6,042	100%
095FH041	3,500	4,532	100%	4,690	100%	4,851	100%	4,995	100%
095FH042	3,500	4,505	100%	4,659	100%	4,809	100%	4,942	100%
095FH043	3,500	6,205	100%	6,612	100%	7,039	100%	7,458	100%
095FH044	3,500	5,301	100%	5,548	100%	5,795	100%	6,021	100%
096FH001	3,500	6,199	100%	6,640	100%	7,187	100%	7,794	100%
096FH002	3,500	7,531	100%	8,755	100%	9,884	100%	11,747	100%
096FH003	3,500	4,074	100%	4,193	100%	4,340	100%	4,474	100%
096FH004	3,500	4,141	100%	4,270	100%	4,436	100%	4,577	100%
096FH005	3,500	6,073	100%	6,503	100%	7,160	100%	7,754	100%
096FH007	3,500	6,515	100%	7,087	100%	7,803	100%	8,656	100%
096FH008	3,500	7,599	100%	8,914	100%	10,144	100%	12,411	100%
096FH009	3,500	6,363	100%	6,831	100%	7,395	100%	8,155	100%
096FH010	3,500	6,615	100%	7,186	100%	7,836	100%	8,659	100%
096FH011	3,500	6,169	100%	6,558	100%	7,047	100%	7,613	100%
096FH012	3,500	6,166	100%	6,568	100%	7,074	100%	7,643	100%
096FH026	3,500	5,880	100%	6,237	100%	6,676	100%	7,252	100%
096FH027	1,000	5,371	100%	5,654	100%	5,931	100%	6,635	100%
096FH028	3,500	5,692	100%	6,006	100%	6,385	100%	6,876	100%
096FH029	3,500	6,874	100%	7,595	100%	8,375	100%	9,474	100%
096FH030	3,500	6,777	100%	7,442	100%	8,170	100%	9,170	100%
096FH031	3,500	5,330	100%	5,579	100%	5,875	100%	6,223	100%
096FH032	3,500	5,532	100%	5,812	100%	6,153	100%	6,541	100%
096FH033	3,500	5,288	100%	5,538	100%	5,848	100%	6,186	100%
096FH034	3,500	6,907	100%	7,671	100%	8,511	100%	9,703	100%
096FH035	3,500	6,705	100%	7,340	100%	8,071	100%	9,015	100%
096FH036	3,500	6,433	100%	6,950	100%	7,602	100%	8,387	100%
096FH037	3,500	5,973	100%	6,359	100%	6,867	100%	7,449	100%
096FH038	3,500	6,003	100%	6,402	100%	6,931	100%	7,537	100%
096FH039	3,500	6,277	100%	6,731	100%	7,340	100%	8,050	100%
096FH040	3,500	6,280	100%	6,730	100%	7,332	100%	8,028	100%
096FH041	3,500	5,894	100%	6,273	100%	6,773	100%	7,340	100%
096FH042	3,500	5,049	100%	5,280	100%	5,568	100%	5,872	100%
096FH043	3,500	6,460	100%	7,020	100%	7,731	100%	8,600	100%
096FH044	3,500	5,949	100%	6,348	100%	6,879	100%	7,489	100%
096FH045	3,000	5,573	100%	5,872	100%	6,236	100%	6,685	100%
096FH047	3,500	4,461	100%	4,624	100%	4,824	100%	5,027	100%
096FH048	3,500	6,071	100%	6,535	100%	7,210	100%	7,921	100%
096FH049	3,500	4,586	100%	4,782	100%	5,040	100%	5,276	100%
096FH050	3,500	4,614	100%	4,814	100%	5,077	100%	5,319	100%

096FH051	3,500	5,168	100%	5,450	100%	5,834	100%	6,203	100%
096FH052	3,500	5,715	100%	6,099	100%	6,642	100%	7,193	100%
096FH053	3,500	5,416	100%	5,741	100%	6,192	100%	6,636	100%
096FH054	3,500	5,608	100%	5,970	100%	6,479	100%	6,988	100%
096FH055	3,500	5,493	100%	5,832	100%	6,307	100%	6,775	100%
096FH056	3,500	5,245	100%	5,537	100%	5,940	100%	6,326	100%
096FH057	3,500	5,669	100%	6,038	100%	6,560	100%	7,081	100%
096FH058	3,500	5,427	100%	5,753	100%	6,210	100%	6,655	100%
096FH059	3,500	6,264	100%	6,773	100%	7,530	100%	8,331	100%
096FH061	3,500	6,576	100%	7,187	100%	7,941	100%	8,865	100%
096FH062	3,500	6,313	100%	6,797	100%	7,524	100%	8,216	100%
096FH063	3,500	4,678	100%	4,868	100%	5,104	100%	5,346	100%
096FH064	3,500	5,273	100%	5,512	100%	5,800	100%	6,108	100%
096FH065	3,500	4,567	100%	4,724	100%	4,906	100%	5,093	100%
096FH066	3,500	3,687	100%	3,767	100%	3,855	100%	3,943	100%
096FH067	3,500	6,557	100%	7,199	100%	8,009	100%	9,032	100%
096FH068	3,500	6,084	100%	6,549	100%	7,184	100%	7,944	100%
096FH069	3,500	5,983	100%	6,423	100%	7,021	100%	7,726	100%
096FH070	3,500	5,741	100%	6,140	100%	6,677	100%	7,299	100%
096FH071	3,500	5,987	100%	6,433	100%	7,036	100%	7,755	100%
096FH072	3,500	6,309	100%	6,826	100%	7,525	100%	8,376	100%
096FH073	3,500	5,861	100%	6,291	100%	6,874	100%	7,563	100%
096FH074	3,500	5,802	100%	6,220	100%	6,788	100%	7,454	100%
096FH075	3,500	5,643	100%	6,038	100%	6,571	100%	7,189	100%
096FH076	500	7,024	100%	7,891	100%	8,472	100%	10,605	100%
096FH077	500	6,741	100%	7,494	100%	7,902	100%	9,682	100%
096FH078	500	6,514	100%	7,204	100%	7,513	100%	9,353	100%
100FH001	3,500	4,913	100%	2,741	78%	2,580	74%	2,412	69%
100FH002	3,500	4,945	100%	2,754	79%	2,561	73%	2,390	68%
100FH003	3,500	4,833	100%	2,673	76%	2,508	72%	2,336	67%
100FH004	3,500	4,745	100%	2,632	75%	2,467	70%	2,294	66%
100FH005	3,500	4,500	100%	2,591	74%	2,431	69%	2,264	65%
100FH006	3,500	4,390	100%	2,556	73%	2,398	69%	2,232	64%
100FH007	3,500	4,420	100%	2,566	73%	2,406	69%	2,239	64%
100FH008	3,500	3,979	100%	2,515	72%	2,376	68%	2,232	64%
100FH009	3,500	3,846	100%	2,404	69%	2,247	64%	2,082	59%
100FH023	3,500	4,406	100%	2,575	74%	2,420	69%	2,257	64%
100FH024	3,500	4,423	100%	2,611	75%	2,458	70%	2,297	66%
100FH025	3,500	4,301	100%	2,598	74%	2,449	70%	2,293	66%
100FH026	3,500	4,351	100%	2,600	74%	2,449	70%	2,291	65%
100FH027	3,500	4,592	100%	2,618	75%	2,457	70%	2,288	65%
100FH028	3,500	5,698	100%	4,014	100%	2,523	72%	2,358	67%
100FH029	3,500	6,398	100%	4,513	100%	2,519	72%	2,357	67%
100FH030	3,500	4,343	100%	2,610	75%	2,460	70%	2,303	66%

100FH032	3,500	4,726	100%	2,614	75%	2,450	70%	2,278	65%
100FH033	3,500	3,995	100%	2,465	70%	2,332	67%	2,199	63%
100FH034	3,500	4,202	100%	2,473	71%	2,314	66%	2,146	61%
100FH035	3,500	4,329	100%	2,503	72%	2,342	67%	2,173	62%
102FH001	3,000	3,636	100%	3,659	100%	3,712	100%	3,620	100%
102FH002	3,000	4,232	100%	4,351	100%	4,462	100%	4,336	100%
102FH005	500	1,261	100%	1,162	100%	1,151	100%	1,135	100%
102FH006	3,000	4,559	100%	4,735	100%	4,852	100%	4,720	100%
103FH001	3,500	7,867	100%	8,193	100%	8,128	100%	8,061	100%
103FH002	3,500	6,836	100%	6,930	100%	6,904	100%	6,864	100%
103FH003	3,500	8,703	100%	9,368	100%	9,232	100%	9,020	100%
103FH004	3,500	5,900	100%	5,794	100%	5,784	100%	5,776	100%
103FH007	3,000	5,379	100%	5,241	100%	5,220	100%	5,204	100%
103FH009	3,000	3,217	100%	2,965	99%	2,957	99%	2,948	98%
103FH010	3,000	4,566	100%	4,418	100%	4,402	100%	4,376	100%
103FH013	3,000	4,916	100%	4,866	100%	4,862	100%	4,813	100%
103FH015	3,000	4,821	100%	4,826	100%	4,843	100%	4,775	100%
103FH016	3,000	4,828	100%	4,923	100%	4,984	100%	4,889	100%
103FH017	3,500	7,313	100%	8,382	100%	8,259	100%	8,148	100%
103FH019	3,000	5,118	100%	5,303	100%	5,261	100%	5,202	100%
103FH020	3,500	6,312	100%	6,948	100%	6,890	100%	6,792	100%
103FH021	3,500	4,046	100%	4,139	100%	4,164	100%	4,071	100%
103FH022	3,500	4,041	100%	4,155	100%	4,174	100%	4,076	100%
103FH023	3,000	4,707	100%	4,832	100%	4,805	100%	4,747	100%
103FH026	3,000	3,796	100%	3,800	100%	3,782	100%	3,739	100%
103FH027	3,500	4,390	100%	4,550	100%	4,592	100%	4,478	100%
103FH029	3,500	3,614	100%	3,647	100%	3,660	100%	3,588	100%
103FH030	3,000	3,925	100%	3,951	100%	3,943	100%	3,891	100%
103FH032	3,000	3,228	100%	3,168	100%	3,187	100%	3,138	100%
103FH033	3,000	4,668	100%	4,786	100%	4,886	100%	4,786	100%
103FH035	3,000	3,393	100%	3,360	100%	3,350	100%	3,310	100%
103FH036	3,000	5,327	100%	5,619	100%	5,886	100%	5,738	100%
103FH038	3,500	6,204	100%	7,701	100%	7,499	100%	7,378	100%
103FH040	3,000	4,196	100%	4,275	100%	4,387	100%	4,290	100%
103FH043	3,000	3,833	100%	3,888	100%	3,936	100%	3,847	100%
103FH047	3,500	4,742	100%	5,432	100%	5,327	100%	5,241	100%
103FH050	3,500	7,063	100%	9,633	100%	9,338	100%	9,170	100%
103FH052	3,000	3,158	100%	3,118	100%	3,141	100%	3,075	100%
103FH053	3,500	3,955	100%	4,539	100%	4,425	100%	4,341	100%
103FH054	3,500	3,788	100%	4,122	100%	4,058	100%	3,997	100%
103FH056	3,000	3,950	100%	4,025	100%	4,100	100%	3,990	100%
103FH059	3,500	3,865	100%	4,220	100%	4,153	100%	4,089	100%
103FH062	3,500	5,839	100%	7,736	100%	7,473	100%	7,313	100%
103FH064	3,500	3,864	100%	4,221	100%	4,152	100%	4,087	100%

103FH067	3,500	3,638	100%	3,923	100%	3,858	100%	3,797	100%
103FH070	3,500	3,553	100%	3,825	100%	3,763	100%	3,703	100%
103FH071	3,500	3,750	100%	4,079	100%	4,008	100%	3,943	100%
103FH075	3,500	5,187	100%	6,634	100%	6,418	100%	6,281	100%
103FH078	3,500	4,601	100%	5,499	100%	5,342	100%	5,238	100%
103FH082	3,500	3,769	100%	4,135	100%	4,058	100%	3,988	100%
103FH083	3,500	3,912	100%	4,403	100%	4,300	100%	4,223	100%
103FH086	3,500	3,865	100%	4,285	100%	4,197	100%	4,122	100%
103FH091	3,000	4,380	100%	4,530	100%	4,597	100%	4,480	100%
103FH092	3,000	3,739	100%	3,792	100%	3,828	100%	3,741	100%
103FH093	3,000	3,801	100%	3,861	100%	3,903	100%	3,812	100%
103FH094	3,000	3,640	100%	3,676	100%	3,712	100%	3,628	100%
103FH095	3,000	3,871	100%	3,935	100%	3,985	100%	3,892	100%
103FH096	3,000	3,568	100%	3,592	100%	3,627	100%	3,548	100%
103FH098	3,000	3,704	100%	3,745	100%	3,786	100%	3,701	100%
103FH099	3,000	3,495	100%	3,512	100%	3,541	100%	3,467	100%
103FH108	3,000	5,973	100%	6,304	100%	6,248	100%	6,181	100%
103FH109	3,000	5,517	100%	5,733	100%	5,682	100%	5,625	100%
103FH110	3,500	5,465	100%	5,650	100%	5,602	100%	5,548	100%
103FH111	3,500	7,398	100%	8,033	100%	7,945	100%	7,862	100%
103FH112	3,500	6,650	100%	7,391	100%	7,361	100%	7,244	100%
103FH113	3,500	6,185	100%	6,749	100%	6,795	100%	6,674	100%
103FH114	3,500	7,077	100%	8,001	100%	8,093	100%	7,931	100%
103FH115	3,500	6,511	100%	7,175	100%	7,337	100%	7,182	100%
103FH116	3,500	5,884	100%	6,339	100%	6,571	100%	6,422	100%
103FH117	3,500	5,069	100%	5,317	100%	5,568	100%	5,432	100%
103FH119	3,000	3,960	100%	4,036	100%	4,096	100%	3,996	100%
103FH120	3,000	3,498	100%	3,512	100%	3,545	100%	3,467	100%
103FH121	3,000	4,116	100%	4,224	100%	4,271	100%	4,169	100%
103FH122	3,000	4,074	100%	4,174	100%	4,216	100%	4,119	100%
103FH123	3,000	4,055	100%	4,153	100%	4,196	100%	4,097	100%
103FH124	3,500	4,422	100%	4,579	100%	4,635	100%	4,520	100%
103FH125	3,500	4,743	100%	5,833	100%	5,652	100%	5,536	100%
103FH126	3,500	5,591	100%	7,654	100%	7,379	100%	7,212	100%
103FH130	3,500	4,897	100%	5,199	100%	5,142	100%	5,082	100%
103FH131	3,000	4,380	100%	4,414	100%	4,448	100%	4,371	100%
103FH133	3,500	3,879	100%	3,638	100%	3,628	100%	3,617	100%
103FH135	3,000	3,573	100%	3,595	100%	3,628	100%	3,554	100%
103FH136	3,000	3,759	100%	3,804	100%	3,843	100%	3,760	100%
103FH137	3,000	6,600	100%	7,181	100%	7,102	100%	7,024	100%
103FH138	3,000	3,458	100%	3,468	100%	3,498	100%	3,425	100%
103FH139	3,000	5,214	100%	5,505	100%	5,765	100%	5,611	100%
103FH140	3,000	4,688	100%	4,867	100%	5,037	100%	4,909	100%
103FH142	3,500	5,354	100%	5,673	100%	5,985	100%	5,826	100%

103FH143	3,500	4,314	100%	4,414	100%	4,546	100%	4,442	100%
103FH149	3,500	5,014	100%	5,253	100%	5,482	100%	5,343	100%
103FH150	3,000	3,843	100%	3,847	100%	3,823	100%	3,780	100%
103FH151	3,000	3,930	100%	3,949	100%	3,928	100%	3,886	100%
104FH003	3,500	4,276	100%	4,124	100%	4,095	100%	4,073	100%
104FH005	3,500	7,199	100%	7,505	100%	7,427	100%	7,358	100%
104FH006	3,500	6,687	100%	6,958	100%	6,885	100%	6,821	100%
104FH008	3,000	4,672	100%	4,618	100%	4,580	100%	4,551	100%
104FH009	3,000	4,497	100%	4,430	100%	4,394	100%	4,368	100%
104FH011	3,000	4,990	100%	4,962	100%	4,921	100%	4,888	100%
104FH012	3,500	6,210	100%	6,649	100%	6,576	100%	6,510	100%
104FH013	3,500	5,088	100%	5,076	100%	5,033	100%	4,998	100%
104FH014	3,500	6,232	100%	6,848	100%	6,753	100%	6,676	100%
104FH016	3,000	4,677	100%	5,084	100%	5,018	100%	4,960	100%
104FH017	2,500	7,731	100%	9,553	100%	9,352	100%	9,236	100%
104FH018	3,000	9,754	100%	14,439	100%	14,128	100%	13,929	100%
104FH019	1,500	8,312	100%	11,147	100%	10,883	100%	10,738	100%
104FH020	3,500	11,194	100%	19,871	100%	19,597	100%	19,079	100%
104FH022	3,500	5,974	100%	6,042	100%	5,985	100%	5,938	100%
104FH026	2,500	3,188	100%	3,518	100%	3,467	100%	3,427	100%
104FH027	2,500	3,104	100%	3,417	100%	3,367	100%	3,328	100%
104FH028	2,500	3,063	100%	3,350	100%	3,303	100%	3,266	100%
104FH030	3,000	3,510	100%	3,922	100%	3,865	100%	3,820	100%
104FH032	3,000	4,854	100%	5,958	100%	5,847	100%	5,773	100%
104FH033	3,000	3,761	100%	3,965	100%	3,919	100%	3,878	100%
104FH039	3,000	3,876	100%	4,428	100%	4,362	100%	4,309	100%
104FH046	1,500	1,964	100%	2,075	100%	2,041	100%	2,015	100%
104FH048	1,500	4,910	100%	6,613	100%	6,395	100%	6,284	100%
104FH049	3,000	3,928	100%	5,004	100%	4,865	100%	4,789	100%
104FH051	2,500	2,978	100%	4,636	100%	4,332	100%	4,184	100%
104FH052	3,500	3,821	100%	4,146	100%	4,094	100%	4,036	100%
104FH063	1,500	3,620	100%	4,313	100%	4,159	100%	4,076	100%
104FH064	1,500	2,716	100%	3,007	100%	2,910	100%	2,857	100%
104FH065	1,500	2,627	100%	2,910	100%	2,815	100%	2,762	100%
104FH066	1,500	1,569	100%	1,627	100%	1,586	100%	1,558	100%
104FH067	1,500	1,606	100%	1,670	100%	1,623	100%	1,592	100%
104FH068	1,500	2,034	100%	2,195	100%	2,122	100%	2,078	100%
104FH069	1,500	1,797	100%	1,893	100%	1,831	100%	1,793	100%
104FH070	1,500	7,775	100%	10,563	100%	10,305	100%	10,166	100%
104FH071	3,500	6,597	100%	7,277	100%	7,184	100%	7,098	100%
104FH072	3,500	6,094	100%	6,564	100%	6,490	100%	6,420	100%
104FH073	3,500	5,448	100%	5,475	100%	5,422	100%	5,380	100%
104FH074	1,500	5,389	100%	7,420	100%	7,198	100%	7,083	100%
104FH075	1,500	4,197	100%	5,140	100%	5,012	100%	4,935	100%

104FH077	1,500	4,141	100%	5,062	100%	4,890	100%	4,795	100%
104FH079	1,500	3,317	100%	3,850	100%	3,727	100%	3,655	100%
104FH080	1,500	3,407	100%	3,942	100%	3,826	100%	3,755	100%
104FH081	1,500	4,727	100%	6,023	100%	5,817	100%	5,703	100%
104FH082	1,500	4,603	100%	5,851	100%	5,646	100%	5,533	100%
104FH083	1,500	4,644	100%	6,013	100%	5,790	100%	5,667	100%
104FH084	1,500	4,661	100%	5,988	100%	5,772	100%	5,655	100%
104FH085	1,500	3,811	100%	4,821	100%	4,606	100%	4,499	100%
104FH086	1,500	2,705	100%	3,103	100%	2,991	100%	2,920	100%
104FH087	1,500	3,737	100%	4,569	100%	4,405	100%	4,307	100%
104FH088	1,500	3,938	100%	4,820	100%	4,655	100%	4,556	100%
104FH089	3,500	8,264	100%	11,000	100%	10,728	100%	10,575	100%
104FH091	1,500	4,173	100%	5,222	100%	5,054	100%	4,953	100%
104FH092	1,500	4,392	100%	6,028	100%	5,777	100%	5,641	100%
104FH093	1,500	4,215	100%	5,350	100%	5,178	100%	5,076	100%
104FH094	1,500	2,782	100%	3,272	100%	3,169	100%	3,102	100%
104FH095	1,500	4,070	100%	5,565	100%	5,327	100%	5,201	100%
104FH096	3,000	4,695	100%	6,847	100%	6,550	100%	6,401	100%
104FH097	3,000	4,738	100%	6,809	100%	6,526	100%	6,384	100%
104FH098	1,500	3,614	100%	4,798	100%	4,585	100%	4,473	100%
104FH099	1,500	3,609	100%	4,688	100%	4,500	100%	4,390	100%
104FH100	1,500	2,698	100%	3,145	100%	3,048	100%	2,984	100%
104FH101	1,500	5,730	100%	7,628	100%	7,382	100%	7,250	100%
104FH102	1,500	2,693	100%	2,962	100%	2,911	100%	2,872	100%
104FH105	1,500	2,969	100%	3,489	100%	3,335	100%	3,261	100%
104FH106	3,500	5,178	100%	5,095	100%	5,049	100%	5,013	100%
104FH107	3,500	7,904	100%	8,301	100%	8,216	100%	8,139	100%
104FH108	3,000	3,068	100%	3,165	100%	3,131	100%	3,101	100%
104FH109	2,500	7,129	100%	11,107	100%	10,820	100%	10,671	100%
104FH110	2,500	7,090	100%	11,024	100%	10,739	100%	10,592	100%
104FH111	3,000	5,288	100%	9,124	100%	8,770	100%	8,593	100%
104FH112	3,000	6,560	100%	10,318	100%	10,031	100%	9,883	100%
104FH113	3,500	5,417	100%	5,332	100%	5,292	100%	5,259	100%
104FH114	3,000	4,403	100%	7,470	100%	7,116	100%	6,946	100%
104FH115	3,000	5,173	100%	6,589	100%	6,459	100%	6,376	100%
105FH007	1,500	2,860	100%	3,460	100%	3,378	100%	3,329	100%
105FH010	1,500	3,129	100%	3,847	100%	3,755	100%	3,702	100%
105FH011	1,500	1,711	100%	3,661	100%	3,575	100%	3,524	100%
105FH013	1,500	3,183	100%	3,812	100%	3,726	100%	3,674	100%
105FH014	1,500	3,762	100%	4,869	100%	4,743	100%	4,677	100%
105FH017	3,500	3,785	100%	4,717	100%	4,604	100%	4,541	100%
105FH019	1,500	4,098	100%	5,447	100%	5,304	100%	5,231	100%
105FH021	3,000	4,885	100%	7,111	100%	6,899	100%	6,807	100%
105FH022	3,500	4,237	100%	5,483	100%	5,343	100%	5,270	100%

105FH025	1,500	5,296	100%	8,019	100%	7,776	100%	7,670	100%
105FH026	1,500	1,789	100%	1,979	100%	1,938	100%	1,914	100%
105FH028	2,500	5,347	100%	7,738	100%	7,516	100%	7,416	100%
105FH029	2,500	2,517	100%	2,924	100%	2,861	100%	2,822	100%
105FH034	3,500	4,251	100%	5,749	100%	5,611	100%	5,530	100%
105FH040	3,500	5,952	100%	10,197	100%	9,876	100%	9,751	100%
105FH043	3,500	5,141	100%	7,799	100%	7,570	100%	7,470	100%
105FH045	3,500	4,058	100%	5,551	100%	5,402	100%	5,327	100%
105FH047	3,500	4,614	100%	6,622	100%	6,431	100%	6,344	100%
105FH049	3,500	4,051	100%	5,441	100%	5,300	100%	5,229	100%
105FH054	1,500	3,700	100%	4,609	100%	4,503	100%	4,445	100%
105FH055	1,500	2,196	100%	2,496	100%	2,443	100%	2,412	100%
105FH056	3,000	4,296	100%	5,546	100%	5,408	100%	5,338	100%
105FH057	1,500	2,090	100%	2,334	100%	2,291	100%	2,261	100%
105FH063	3,500	4,108	100%	5,129	100%	5,003	100%	4,937	100%
105FH064	3,500	3,962	100%	4,918	100%	4,796	100%	4,731	100%
105FH065	2,500	3,149	100%	3,727	100%	3,646	100%	3,594	100%
105FH066	2,500	2,638	100%	3,154	100%	3,077	100%	3,021	100%
105FH067	2,500	2,683	100%	3,237	100%	3,156	100%	3,096	100%
105FH068	2,500	3,677	100%	5,339	100%	5,092	100%	4,977	100%
105FH069	1,500	1,584	100%	1,798	100%	1,752	100%	1,715	100%
105FH075	1,500	5,626	100%	9,529	100%	9,257	100%	9,138	100%
105FH076	1,500	3,342	100%	4,211	100%	4,094	100%	4,037	100%
105FH077	1,500	2,432	100%	2,872	100%	2,794	100%	2,754	100%
105FH087	1,500	2,660	100%	3,086	100%	3,022	100%	2,981	100%
105FH088	2,500	3,900	100%	4,824	100%	4,702	100%	4,637	100%
105FH089	2,500	4,012	100%	5,225	100%	5,094	100%	5,027	100%
105FH094	3,000	3,184	100%	5,704	100%	5,307	100%	5,120	100%
105FH097	3,000	3,085	100%	5,157	100%	4,818	100%	4,657	100%
105FH099	1,500	3,595	100%	4,458	100%	4,354	100%	4,297	100%
105FH100	2,500	3,248	100%	3,991	100%	3,898	100%	3,846	100%
105FH101	3,000	4,671	100%	6,628	100%	6,437	100%	6,350	100%
105FH102	1,500	5,317	100%	8,396	100%	8,135	100%	8,035	100%
105FH103	3,500	4,469	100%	6,245	100%	6,083	100%	6,001	100%
105FH104	3,500	5,328	100%	8,440	100%	8,177	100%	8,075	100%
105FH105	3,500	6,008	100%	10,533	100%	10,218	100%	10,096	100%
105FH106	3,500	6,357	100%	12,031	100%	11,710	100%	11,566	100%
105FH107	3,500	6,694	100%	13,220	100%	12,924	100%	12,763	100%
105FH108	3,500	6,533	100%	12,574	100%	12,288	100%	12,141	100%
105FH109	3,000	6,078	100%	10,450	100%	10,131	100%	10,005	100%
105FH110	3,500	3,931	100%	5,367	100%	5,240	100%	5,167	100%
106FH001	1,500	2,733	100%	2,755	100%	2,742	100%	2,720	100%
106FH002	1,500	2,051	100%	2,104	100%	2,095	100%	2,078	100%
106FH003	1,500	2,054	100%	2,159	100%	2,149	100%	2,131	100%

107FH001	1,500	2,455	100%	2,447	100%	2,447	100%	2,433	100%
107FH002	1,500	2,996	100%	2,971	100%	2,962	100%	2,943	100%
107FH003	1,500	2,646	100%	2,637	100%	2,631	100%	2,615	100%
107FH004	3,000	4,195	100%	4,274	100%	4,283	100%	4,293	100%
107FH005	1,500	2,179	100%	2,173	100%	2,173	100%	2,166	100%
107FH006	1,500	4,374	100%	4,457	100%	4,466	100%	4,478	100%
107FH007	3,500	5,159	100%	6,456	100%	6,479	100%	6,526	100%
107FH008	3,500	5,812	100%	7,907	100%	7,950	100%	8,050	100%
107FH009	3,500	5,964	100%	8,293	100%	8,327	100%	8,405	100%
107FH010	3,500	4,370	100%	5,141	100%	5,156	100%	5,180	100%
107FH011	3,500	3,792	100%	4,265	100%	4,274	100%	4,285	100%
107FH012	3,500	4,218	100%	4,898	100%	4,911	100%	4,931	100%
107FH013	3,500	4,874	100%	6,197	100%	6,210	100%	6,232	100%
107FH015	3,500	4,418	100%	5,852	100%	5,862	100%	5,872	100%
107FH016	3,500	3,604	100%	4,006	100%	4,014	100%	4,022	100%
107FH027	3,500	5,838	100%	7,804	100%	7,835	100%	7,912	100%
107FH028	3,500	4,762	100%	6,406	100%	6,418	100%	6,437	100%
107FH029	3,500	5,506	100%	7,607	100%	7,630	100%	7,680	100%
107FH031	3,500	3,513	100%	3,966	100%	3,971	100%	3,970	100%
107FH032	3,500	3,724	100%	4,187	100%	4,197	100%	4,207	100%
107FH033	3,500	4,258	100%	4,977	100%	4,991	100%	5,012	100%
108FH001	3,500	4,418	100%	5,121	100%	5,157	100%	5,211	100%
108FH002	1,500	4,422	100%	4,501	100%	4,510	100%	4,522	100%
108FH004	3,000	4,596	100%	4,734	100%	4,761	100%	4,796	100%
108FH006	1,500	6,295	100%	6,582	100%	6,602	100%	6,655	100%
108FH007	1,500	5,146	100%	5,251	100%	5,263	100%	5,281	100%
108FH008	3,500	5,770	100%	6,289	100%	6,353	100%	6,447	100%
108FH009	3,500	4,287	100%	5,095	100%	5,132	100%	5,187	100%
108FH010	1,500	4,593	100%	4,674	100%	4,684	100%	4,697	100%
108FH011	1,500	5,646	100%	5,818	100%	5,833	100%	5,864	100%
108FH012	3,000	4,053	100%	4,166	100%	4,186	100%	4,210	100%
108FH013	3,500	5,255	100%	5,640	100%	5,686	100%	5,762	100%
108FH014	3,500	4,412	100%	4,598	100%	4,641	100%	4,702	100%
108FH015	3,500	5,010	100%	5,129	100%	5,141	100%	5,160	100%
108FH016	3,500	4,729	100%	5,351	100%	5,393	100%	5,461	100%
108FH017	3,500	5,091	100%	5,381	100%	5,451	100%	5,549	100%
108FH018	3,000	5,511	100%	5,960	100%	6,018	100%	6,113	100%
108FH019	3,500	6,107	100%	6,682	100%	6,797	100%	6,981	100%
108FH020	3,000	4,642	100%	4,848	100%	4,877	100%	4,922	100%
108FH021	3,500	6,133	100%	6,806	100%	6,916	100%	7,111	100%
108FH023	3,000	3,974	100%	4,090	100%	4,109	100%	4,130	100%
108FH024	3,500	6,435	100%	7,420	100%	7,547	100%	7,799	100%
108FH026	3,500	4,341	100%	4,757	100%	4,789	100%	4,924	100%
108FH027	3,500	6,076	100%	7,621	100%	7,719	100%	7,998	100%

108FH028	3,500	4,679	100%	5,572	100%	5,600	100%	5,675	100%
108FH029	3,500	5,142	100%	5,804	100%	5,859	100%	6,064	100%
108FH030	3,500	4,862	100%	5,750	100%	5,784	100%	5,882	100%
108FH031	3,500	6,028	100%	7,668	100%	7,760	100%	8,028	100%
108FH032	3,500	4,954	100%	5,668	100%	5,712	100%	5,832	100%
108FH033	3,500	4,437	100%	4,923	100%	4,958	100%	5,132	100%
108FH034	3,500	5,245	100%	6,134	100%	6,185	100%	6,336	100%
108FH035	3,500	4,673	100%	5,210	100%	5,254	100%	5,411	100%
108FH037	3,500	4,223	100%	4,640	100%	4,663	100%	4,718	100%
108FH038	3,500	5,510	100%	6,699	100%	6,789	100%	7,411	100%
108FH039	3,500	5,333	100%	6,224	100%	6,294	100%	6,574	100%
108FH040	3,500	6,430	100%	6,895	100%	6,980	100%	7,097	100%
108FH041	3,500	6,372	100%	6,748	100%	6,823	100%	6,925	100%
108FH042	3,500	6,181	100%	6,479	100%	6,544	100%	6,631	100%
108FH043	3,500	5,371	100%	6,241	100%	6,306	100%	6,491	100%
108FH045	3,500	6,315	100%	7,810	100%	7,941	100%	8,331	100%
108FH046	3,500	5,129	100%	5,916	100%	5,974	100%	6,176	100%
108FH047	3,000	5,295	100%	5,624	100%	5,669	100%	5,745	100%
108FH048	3,500	6,109	100%	7,444	100%	7,559	100%	7,916	100%
108FH049	3,500	5,131	100%	5,981	100%	6,048	100%	6,947	100%
108FH050	3,500	4,523	100%	5,085	100%	5,124	100%	5,585	100%
108FH051	3,500	4,232	100%	4,716	100%	4,749	100%	5,107	100%
108FH052	3,500	4,201	100%	4,699	100%	4,732	100%	5,077	100%
108FH053	3,500	4,563	100%	5,218	100%	5,259	100%	5,703	100%
108FH054	3,500	3,995	100%	4,423	100%	4,450	100%	4,712	100%
108FH055	3,500	5,186	100%	6,257	100%	6,349	100%	7,692	100%
108FH056	3,500	4,455	100%	5,071	100%	5,115	100%	5,638	100%
108FH057	3,500	4,308	100%	4,834	100%	4,870	100%	5,258	100%
108FH058	3,500	4,374	100%	4,953	100%	4,991	100%	5,390	100%
108FH059	3,500	5,069	100%	6,022	100%	6,082	100%	6,746	100%
108FH060	3,500	5,096	100%	6,069	100%	6,131	100%	6,753	100%
108FH061	3,500	4,349	100%	4,988	100%	5,033	100%	5,522	100%
108FH062	3,500	4,812	100%	5,600	100%	5,663	100%	6,562	100%
108FH063	3,000	5,187	100%	6,021	100%	6,108	100%	8,865	100%
108FH064	3,500	5,012	100%	6,149	100%	6,199	100%	6,613	100%
108FH065	3,500	5,066	100%	6,349	100%	6,393	100%	6,702	100%
108FH066	3,500	5,098	100%	6,652	100%	6,692	100%	6,917	100%
108FH067	3,500	4,284	100%	8,256	100%	8,276	100%	8,295	100%
108FH068	3,500	4,543	100%	7,033	100%	7,055	100%	7,089	100%
108FH069	3,500	4,925	100%	6,994	100%	7,022	100%	7,078	100%
108FH070	3,500	5,715	100%	8,197	100%	8,256	100%	8,390	100%
108FH071	3,500	5,034	100%	6,040	100%	6,096	100%	6,640	100%
108FH072	3,500	4,470	100%	5,179	100%	5,218	100%	5,277	100%
108FH073	3,500	4,145	100%	4,747	100%	4,772	100%	4,952	100%

109FH001	3,500	6,384	100%	6,875	100%	7,098	100%	7,340	100%
109FH002	3,500	4,654	100%	4,808	100%	4,895	100%	4,978	100%
109FH003	3,500	5,617	100%	5,980	100%	6,113	100%	6,265	100%
109FH004	3,500	4,899	100%	5,079	100%	5,179	100%	5,277	100%
109FH005	3,500	5,895	100%	6,337	100%	6,470	100%	6,639	100%
109FH006	3,500	4,927	100%	5,108	100%	5,210	100%	5,309	100%
109FH007	3,500	4,945	100%	5,128	100%	5,232	100%	5,333	100%
109FH008	3,500	6,073	100%	7,086	100%	7,243	100%	9,494	100%
109FH009	3,500	6,318	100%	7,202	100%	7,374	100%	9,526	100%
109FH010	3,500	6,308	100%	7,080	100%	7,266	100%	9,653	100%
109FH011	3,500	6,315	100%	7,019	100%	7,230	100%	10,340	100%
109FH012	500	6,418	100%	7,107	100%	7,358	100%	9,590	100%
118FH002	1,500	1,934	100%	2,296	100%	2,182	100%	2,117	100%
118FH004	1,500	1,728	100%	2,016	100%	1,900	100%	1,827	100%
118FH005	1,500	1,705	100%	1,977	100%	1,863	100%	1,791	100%
118FH006	1,500	1,776	100%	2,039	100%	1,927	100%	1,860	100%
118FH008	1,500	1,673	100%	2,028	100%	1,898	100%	1,838	100%
118FH009	1,500	2,027	100%	2,479	100%	2,316	100%	2,219	100%
118FH011	1,500	1,732	100%	2,041	100%	1,913	100%	1,834	100%
118FH013	1,500	1,721	100%	2,091	100%	1,953	100%	1,885	100%
118FH014	1,500	2,588	100%	3,464	100%	3,208	100%	3,071	100%
118FH015	1,500	2,698	100%	3,726	100%	3,433	100%	3,280	100%
118FH016	1,500	2,533	100%	3,373	100%	3,124	100%	2,987	100%
118FH017	1,500	1,593	100%	1,859	100%	1,740	100%	1,667	100%
118FH018	1,500	1,604	100%	1,692	100%	1,642	100%	1,606	100%
118FH019	1,500	2,424	100%	3,006	100%	2,823	100%	2,720	100%
118FH020	1,500	2,432	100%	3,012	100%	2,828	100%	2,726	100%
118FH021	1,500	2,400	100%	2,954	100%	2,773	100%	2,674	100%
118FH022	1,500	1,794	100%	2,005	100%	1,906	100%	1,852	100%
118FH024	1,500	2,274	100%	2,885	100%	2,678	100%	2,562	100%
118FH025	1,500	2,296	100%	2,945	100%	2,731	100%	2,609	100%
118FH026	1,500	2,027	100%	2,400	100%	2,265	100%	2,198	100%
118FH029	1,500	1,544	100%	1,848	100%	1,704	100%	1,612	100%
118FH030	1,500	1,813	100%	2,154	100%	2,021	100%	1,952	100%
118FH033	1,500	1,760	100%	2,200	100%	2,036	100%	1,935	100%
118FH035	1,500	1,790	100%	2,183	100%	2,040	100%	1,952	100%
118FH037	1,500	2,487	100%	3,432	100%	3,178	100%	3,086	100%
118FH043	1,500	2,489	100%	3,745	100%	3,441	100%	3,328	100%
118FH044	1,500	2,038	100%	2,991	100%	2,700	100%	2,563	100%
118FH045	1,500	2,489	100%	4,050	100%	3,721	100%	3,593	100%
118FH046	1,500	1,928	100%	3,391	100%	3,013	100%	2,863	100%
118FH047	1,500	2,313	100%	4,118	100%	3,764	100%	3,624	100%
118FH050	1,500	1,922	100%	3,569	100%	3,165	100%	3,006	100%
118FH051	1,500	2,232	100%	4,535	100%	4,169	100%	4,010	100%

118FH055	1,500	1,737	100%	3,734	100%	3,364	100%	3,219	100%
118FH056	1,500	1,618	100%	2,829	100%	2,550	100%	2,426	100%
118FH057	1,500	1,697	100%	3,488	100%	3,115	100%	2,973	100%
118FH058	1,500	1,729	100%	3,363	100%	3,020	100%	2,893	100%
118FH059	1,500	1,621	100%	3,260	100%	2,877	100%	2,724	100%
118FH061	1,500	2,298	100%	3,042	100%	2,829	100%	2,725	100%
118FH063	2,500	2,563	100%	3,524	100%	3,235	100%	3,068	100%
118FH064	2,500	2,509	100%	3,513	100%	3,205	100%	3,014	100%
118FH065	1,500	2,000	100%	2,575	100%	2,358	100%	2,212	100%
118FH077	1,500	2,235	100%	2,895	100%	2,674	100%	2,540	100%
143FH010	3,500	3,656	100%	7,183	100%	7,066	100%	6,891	100%
143FH011	3,500	3,511	100%	5,977	100%	5,885	100%	5,752	100%
143FH012	3,500	3,904	100%	7,279	100%	7,148	100%	6,956	100%
143FH013	3,500	3,619	100%	5,758	100%	5,663	100%	5,527	100%
143FH014	3,500	4,113	100%	7,144	100%	7,004	100%	6,800	100%
157FH013	3,500	3,946	100%	5,290	100%	5,186	100%	5,002	100%
157FH014	3,500	4,079	100%	5,576	100%	5,485	100%	5,306	100%
157FH015	3,500	3,563	100%	4,789	100%	4,715	100%	4,577	100%
157FH022	3,500	8,615	100%	9,036	100%	8,842	100%	8,603	100%
157FH023	3,500	3,904	100%	5,912	100%	5,810	100%	5,658	100%
157FH024	3,500	4,500	100%	7,409	100%	7,252	100%	7,018	100%
157FH025	3,500	3,980	100%	5,796	100%	5,685	100%	5,512	100%

Appendices

Appendix 5-E Distribution System Assessment Method Additional Information

- Assessment Means Asset Attributes and Performance Parameters
- Assessment Method Scoring Matrix
- Assessment Method Data Structure Schematic

Water Main Facility ID Use this GIS field to link together all sources of data

						Asset	Attributes	
Name	Type (LoF/CoF)	GIS Feature Type	Phase	GIS Source	Unit	Data Quality	Obtain From	Comments
Pipe Material	LoF	Polyline	1	Mains	N/A	Good	As-builts, specs, field inspection	Confirm in field
Pipe Diameter	LoF	Polyline	1	Mains	inches	Good	As-builts, field inspection	Confirm in field
Pipe Age	LoF	Polyline	1	Mains	years	Fair	Pipe installed date	Convert from year to age by subtracting current
Surface Conditions	LoF	Polyline	1	Mains	N/A	Fair	Aerial, right-of-way, etc.	Assign based on surface - high traffic road, light t
Soil Type	LoF	Polygon	1	Soil Types	N/A	Good	USDA SSURGO data	Assign based on USDA SSURGO soil types
Pipe Depth	LoF	Polyline	2	Mains	feet	None	As-builts, field inspection	Pipe depth is currently not being tracked in GIS b
Pipe Pressure Class	LoF	Polyline	2	Mains	N/A	None	As-builts, specs, field inspection	Assign based on as-builts, field inspection, or pip
Pipe Joint Type	LoF	Polyline	2	Mains	N/A	None	As-builts, specs, field inspection	Assign based on as-builts, field inspection, or pip
Pipe Bedding	LoF	Polyline	2	Mains	N/A	None	As-builts, specs, field inspection	Assign based on as-builts or field inspection
Trench Backfill	LoF	Polyline	2	Mains	N/A	None	As-builts, specs, field inspection	Assign based on as-builts or field inspection
Pipe Protection	LoF	Polyline	2	Mains	N/A	None	As-builts, specs, field inspection	Assign based on poly wrap, cathodic protection,
Pipe Condition	LoF	Polyline	2	Mains	N/A	None	Field inspection	Document from field inspection (excellent, good
Pipe Manufacturer	LoF	Polyline	2	Mains	N/A	None	Field inspection, submittals	Confirm in field
Installation Contractor	LoF	Polyline	2	Mains	N/A	None	As-builts, submittals	
Soil Corrosivity	LoF	Point	2	Soil Points	ohm cm	None	Field soils testing	Assign based on nearest soil inspection point
Soil Resistivity	LoF	Point	2	Soil Points	ohm cm	None	Field soils testing	Assign based on nearest soil inspection point
Redox Potential	LoF	Point	2	Soil Points	mV	None	Field soils testing	Assign based on nearest soil inspection point
Soil pH	LoF	Point	2	Soil Points	рН	None	Field soils testing	Assign based on nearest soil inspection point
Soil Moisture Content	LoF	Point	2	Soil Points	%	None	Field soils testing	Assign based on nearest soil inspection point
Groundwater Table	LoF	Polygon	2	Groundwater Table	feet	None	Field inspection	Groundwater table layers may be available in GI

						<u>Performan</u>	ce Parameters	
Name	Type (LoF/CoF)	GIS Feature Type	Phase	GIS Source	Unit	Data Quality	Obtain From	Comments
Pipe Function	CoF	Polyline	1	Mains	N/A	Good	Pipe diameter	Assign from diameter - Transmission > 12", Distribution ≤ 12-inch", Fire Hydrant Lateral, Service Line
Operating Pressure	LoF	Polyline	1	Model Results	psi	Good	Hydraulic model	Assign based on average of two end point junction pressure model results
Operating Velocity	LoF	Polyline	1	Model Results	ft/s	Good	Hydraulic model	Assign based on average velocity model results
Surge Potential	LoF	Polyline	1	Model Results	psi	Good	Hydraulic model	Assign based on peak hour model velocity and pressure results and pipe material
Fire Flow Deficiency	LoF	Point	1	Model Results	gpm	Good	Hydraulic model	Assign to nearest main based on model results
Main Criticality	CoF	Polyline	1	Model Results	inch-gpm	Good	Hydraulic model	Assign based on diameter x flow based on model results
Critical Facility	CoF	Polyline	1	Mains	N/A	Good	Parcels, land use, zoning	Hospitals, schools, dialysis, data centers, etc.
Main Breaks	LoF	Point	1	Main Breaks	N/A	Fair	Main break data	Obtain points from field collection and link to nearest pipe
Failure Impact	CoF	Polyline	1	Mains	N/A	Fair	Various GIS layers	Ditches, creeks, wetlands, bridges, roads, etc.
Isolation Ability	LoF	Point	1	Valves	N/A	Good	Valves and hydraulic model	Assign based on the ability to isolate a main break
Remaining Life of Pipe	LoF	Polyline	2	GIS Main Data	N/A	None	Main break data	Assign based on standard material values or derived from main break data
Valve Condition	LoF	Point	2	Valves	N/A	None	Valve field inspection	Assign based on valve inspection and exercising data collection
Hydrant Condition	LoF	Point	2	Hydrants	N/A	None	Hydrant field inspection	Assign based on hydrant inspection and flushing data collection
Customer Complaints	LoF	Point	2	Customer Complaints	N/A	None	Customer complaint database	Quality, pressure, etc.
Main Leaks	LoF	Point	2	Leaks	N/A	None	Leak data	Assign to nearest main based on leak locations
Main Repairs	LoF	Point	2	Repairs	N/A	None	Repair data	Assign to nearest main based on repair locations
Last Inspected	LoF	Polyline	2	Mains	Date	None	Field inspection	Assign based on last field inspection date

2013 Cheyenne Water and Wastewater Master Plans Volume 5 - Potable Water Storage and Distribution

REVISED 8/22/13

year by pipe installed date
raffic road, sidewalk, open space, etc.
ut should be collected while in the field and added
e material
e material
etc.
, fair, poor)
5 format

Water Main Facility ID Use this GIS field to link together all sources of data

	Asset Attributes																		
																Category	Maximum		
Name	Asset Attributes/Scoring																Factor	Score	
					Cementitious (ACP,	Plastic (HDPE,													
Pipe Material Attributes	CIPL	CIPU	DIP	SP	PCCP, Transite)	PVC)												-	-
Pipe Material Score	5	4	3	3	2	1												3	15
Pipe Diameter Range (inches)	4	6	8	10-12	14-24	30+												-	-
Pipe Diameter Score	5	5	3	2	1	1												3	15
Pipe Age (years)	70+	60	50	40	30	20	10											-	-
Pipe Age Score	4	5	5	5	3	2	1											4	20
						Open													
Surface Condition Attributes	Heavy Traffic	Medium Traffic	Light Traffic	Parking Lot	Sidewalk	Space/Park												-	-
Surface Condition Score	5	4	3	2	2	1												3	15
Soil Type (USDA SSURGO)	101	102	104	131	138	142	145	158	162	171	182	183	184	186	187	188	189	-	-
Soil Type Score	1	1	2	2	1	1	5	1	2	1	5	2	3	5	5	4	3	1	5
Max Asset Attribute Score																			70

	Performance Parameters																	
Name						Perforr	nance Para	neters/Sco	oring								Category Factor	Maximum Score
Pipe Function Attributes	Transmission	Distribution Hydrant Lateral Service Lateral												-	-			
Pipe Function Score	5	4	3	2													2	10
Operating Pressure Range (psi)	0-80	80-100	100-120	120-150	150+												-	-
Operating Pressure Score	1	3	3	3	5												4	20
Operating Velocity Range (ft/s)	0-2	2-4	4-7	7-10	> 10												-	-
Operating Velocity Score	1	2	3	4	5												3	15
Surge Pressure Range (psi)	0-100	100-150	150-200	200-350	350+												-	-
Surge Potential Score	1	2	3	4	5												1	5
Fire Flow Deficiency Range (gpm)	250	250-500	500-1000	1000-2000	2000+												-	-
Fire Flow Deficiency Score	1	2	3	4	5												2	10
Criticality Range (inches x gpm)	0-100	100-1000	1000-10000	10000-50000	50000+												-	-
Main Criticality Score	1	2	3	4	5												3	15
Critical Facility Types	Hospital	Dialysis Center	School	Data Center													-	-
Critical Facility Score	5	5	3	2													2	10
Number of Main Breaks	> 3	3	2	1	0												-	-
Main Break Score	5	4	3	2	0												5	25
Failure Impact	Interstate	Roadway	Bridge	Park	Wetland	Ditch	Stream										-	-
Failure Impact Score	4	2	5	2	4	3	5										2	10
Isolation Ability	None	Poor	Fair	Good	Excellent												-	-
Isolation Ability Score	5	4	2	1	0												2	10
Max Performance Parameter Score																		130
Total Max Score																		200

2013 Cheyenne Water and Wastewater Master Plans Volume 5 - Potable Water Storage and Distribution

REVISED 8/22/13

Appendices

Appendix 5-F Preventative Maintenance Recommendations Additional Information

- Example Performance Indicators for Water Systems
- The 2012 Comparative Review of Municipal Maintenance and Infrastructure Asset Management Systems (Water Finance Research Foundation)
- Excerpt on Cheyenne BOPU from DRAFT "Legacy of Manganese Accumulation in Water Systems: Assessment, Consequence and Prevention", Water Research Foundation (WRF), 2013.
- Preventative Maintenance Practices Summary and Data Collection Recommendations

TEMPLATE FOR PERFORMANCE INDICATORS FOR DRINKING WATER ASSETS

Contents

General Assets	. 1
Water Distribution Assets	.7

General Assets

PERFORMANCE INDICATOR: Regulatory Compliance Rate			
Level 1 Asset: General	Tier 1	Goal Area: Reliability	
DEFINITION: The percentage of water standards.	time each year that	a water utility meets all the health-related drinking	
USE: The compliance rate is a bro requirements in the National Prima	ad measure of the c ary Drinking Water	quality of water and treatment technique Regulations.	
ASSUMPTIONS/CHALLENGES: The compliance rate measures compliance with all water quality and treatment technique requirements for public water systems. The compliance rate does not consider secondary maximum contaminant levels (MCLs) or monitoring requirements.			
CALCULATION: $\left(\frac{\text{Times of measurement in one year}}{\text{Times of compliance in one year}}\right) \times 100$ Where: <i>out of compliance</i> is defined by federal and state requirements for public water systems. Data needed: The number of calendar days where the water utility is in compliance with the applicable health-related drinking water requirements.			
RELATED INDICATORS: Source water quality, treatment effectiveness.			

REPORTED VALUES IN INDUSTRY: A compliance rate of 100% is the goal for all public water utilities.

PERFORMANCE INDICATOR: Operations and Maintenance (O&M) Cost Ratio				
Level 1 Asset: General	Tier 1	Goal Area: Efficiency		
DEFINITION: The total O&M cos gallons.	st per million gallor	ns (MG) of water produced in dollars per million		
USE: This indicator is a useful mea	asure of the econor	nic efficiency of the water utility.		
ASSUMPTIONS/CHALLENGES	: Depreciation is ex	scluded from the total O&M costs.		
CALCULATION:	/	Ň		
O&M cost per MG prc	essed = $\left(\frac{1}{\text{Volume pr}}\right)$	$\frac{\text{Total O\&M costs}}{\text{roduced during reporting period (MG)}}$		
Where: total O&M costs are comp (GASB) or Financial Accounting S	iled in accordance Standards Board (F	with Governmental Accounting Standards Board ASB) statements of accounting practice.		
Data needed: Total O&M costs, to	tal volume of produ	uced water.		
RELATED INDICATORS: Huma main break rate.	n resources efficier	ncy, source water quality, treatment efficiency,		
REPORTED VALUES IN INDUS	TRY: None provid	led.		
PERFORMANCE INDICATOR:	Customer Water (Quality Complaints		
Level 1 Asset: General	Tier 1	Goal Area: Water quality		
DEFINITION: Total number of cu center/plant/public works yard per quality (i.e., taste and odor, color a	stomer complaints year per 1,000 cus nd temperature, an	received at the customer service tomers. Include all complaints related to water d other or unknown quality related issues).		
USE: This performance indicator i received from the service provider	USE: This performance indicator is a specific measure of customer satisfaction with the quality of water received from the service provider.			
ASSUMPTIONS/CHALLENGES: It is important to log all customer complaints and make a distinction between water quality and other complaints. An added benefit would be to make a distinction between water quality complaints related to taste, odor, color, or temperature. A complaint requires followup action and should not include general inquiries.				
CALCULATION:				
Total number of water quality customer complaints in one year				
1,000 customers served Data needed: Total number of water quality complaints; service population.				
RELATED INDICATORS: Disinf	ectant residual con	centration; total coliform positives.		
REPORTED VALUES IN INDUS	TRY: None provid	led.		

PERFORMANCE INDICATOR: Energy Usage			
Level 1 Asset: General	Tier 1	Goal Area: Efficiency	
DEFINITION: The annual energy usage per million gallons (MG) of water delivered to the distribution system. This indicator can also be evaluated on a process basis (i.e., raw water transmission, treatment, distribution).			
USE: This indicator assesses the en	nergy efficiency of	the distribution system.	
ASSUMPTIONS/CHALLENGES: This is a portion of the total energy cost for the water system. The energy usage for this portion of water operations may not be readily available or may take some effort to estimate.			
CALCULATION:			
	Totalen	$ergy usage (k \cdot Wh)$	
Total volume of water MG put into the distribution system on an annual basis			
Where: the total energy usage applies to the total amount of energy used by a water system.			
Data needed: The total annual energy usage for the water system and the total volume of treated water put into the distribution system.			
RELATED INDICATORS: Cost per million gallons to deliver water.			

REPORTED VALUES IN INDUSTRY: None provided.

PERFORMANCE INDICATOR: Outages/Interruptions of Service

Level 1 Asset: General

Tier 1

Goal Area: Reliability

DEFINITION: Number and duration (hours) of water supply per year. This indicator tracks two items, the first being the number of times per year that an interruption occurs and the second is the aggregate in hours per year that supply is unavailable in adequate quantity.

USE: This indicator assesses reliability of water service to the customer. Alternatives for more expensive or emergency sources of water supply can be evaluated with this data. Lengthy interruptions can be catastrophic and this indicator may provide an alert to future risks. This indicator can be based on reliable supply to the consumer and can also be applied to specific processes.

ASSUMPTIONS/CHALLENGES: Neither the number of interruptions nor the duration may capture the character of the indicator. Twenty-four interruptions of 1-hour duration is a different measure than a single 24-hour interruption.

CALCULATION:

Number of interruptions of water supply per year, and total hours of water supply interruption per year.

Where: interruption events are counted when water supply is unavailable or significantly below needed requirements or expectations.

Data needed: Number of interruptions and duration of each interruption. Can be calculated for the system as a whole, or can be measured by each major asset group.

RELATED INDICATORS: The number and duration of interruptions in source water, raw water transmission, water treatment, and distribution that help make up the total interruptions. Storage capacity adequacy in transmission, treatment, and distribution are closely related as they can offset this factor.

REPORTED VALUES IN INDUSTRY: The desired indicator value is zero interruptions with zero hours of interruption per year. As noted above, storage can offset some level of interruptions; consequently, the acceptable values will vary from system to system.

PERFORMANCE INDICATOR: Human Resources (HR) Efficiency			
Level 1 Asset: General	Tier 2	Goal Area: Efficiency	
DEFINITION: Total annual volum equivalent (FTE) employees in MO	ne of water in millio G/FTE.	on gallons (MG) produced per number of full-time	
USE: This performance indicator i	s a measure of the	company's staffing efficiency.	
ASSUMPTIONS/CHALLENGES: This indicator should be evaluated on a process basis (i.e., raw water transmission, treatment, distribution) and should include all field, technical/engineering, supervisor/support and laboratory staff.			
CALCULATION: $HR efficiency = \frac{Annual volume of water produced (MG per year)}{Number of FTE employees}$ Where: the average number of FTE employees is the number of FTE employees over the reporting period. Data needed: Annual volume of water produced and the average number of FTE employees over the reporting period.			
RELATED INDICATORS: None.			
REPORTED VALUES IN INDUSTRY: None provided.			

PERFORMANCE INDICATOR: Employee Training			
Level 1 Asset: General	Tier 2	Goal Area: Efficiency	
DEFINITION: The number of trai	ning hours per emp	loyee per year.	
USE: This performance indicator is skills and service levels of the emp	s a measure of the bloyees.	investment by the company in maintaining the	
ASSUMPTIONS/CHALLENGES: This performance indicator includes all training hours for the company, both internal and external. All categories of training (e.g., safety, maintenance, and best practices) are included in this indicator. This indicator does not differentiate between job functions within the company.			
CALCULATION: Annual training hours per employee = $\frac{\text{Total annual training hours for employees}}{\text{Average number of FTE employees}}$			
For reporting periods other than one year, the performance indicator may be calculated as follows: Annual training hours per employee = $\frac{\text{Number of days in reporting period (365)}}{(\text{Number of days in reporting period}) \times (\text{Number of FTE employees})}$ Where:			
The total annual training hours includes all training hours for the reporting period, including all types of training and all job functions.The total average number of FTE employees is the average number of FTE employees over the reporting period.			
Data needed: The total annual training hours provided and the average number of FTE employees during the reporting period.			
RELATED INDICATORS: None.			
REPORTED VALUES IN INDUSTRY: None provided.			

WATER DISTRIBUTION ASSETS

PERFORMANCE INDICATOR: Pressure Adequacy			
Level 1 Asset: Water Distribution	Tier 1	Goal Area: Adequacy	
DEFINITION: The ability to main minimum and maximum limits.	tain pressure in the	water distribution system within established	
USE: This indicator assesses whet distribution system.	her the pressures a	re controlled within acceptable limits in the	
ASSUMPTIONS/CHALLENGES: System pressures are affected by the topography of the system, tank elevations, pump operation, leakage, and water demand. System pressure data throughout the system may be difficult to obtain. Customer complaints and extended time hydraulic modeling may be used to evaluate working pressure ranges. Transient high and low pressures may be difficult to detect and record.			
CALCULATION:			
Number of events lower tha	s per year where sy in established minii	stem pressures are either higher or num and maximum limits	
Where:			
Pressures are measured at ground level. Events can be expressed as are the number of instances, days, number of customers affected, or duration of the pressure deficiency.			
Data needed: Measured and monitored system pressures, including hydrant static pressure measurements or in absence of actual pressure data; users can use hydraulic model of the distribution system to determine pressures under various demand conditions.			
RELATED INDICATORS: Water demand.			
REPORTED VALUES IN INDUSTRY: Water Research Foundation project 4109 (Friedman et al. 2010) recommends the following guidance on pressure:			
 Within +10 psi of average pressures at each customer's service location. Above 35 psi under normal conditions at each customer's service location. Above 20 psi under peak and fire-flow conditions throughout the system. Above 0 psi during emergencies such as main breaks and power outages throughout the distribution system. Desired maximum pressure of no more than 100 psi. 			

PERFORMANCE INDICATOR: Disinfectant Residual Concentration				
Level 1 Asset: Water Distribution	Tier 1	Goal Area: Water quality		
DEFINITION: The number of occ concentrations were less than the r	currences over a yea minimum required	ar where measured disinfectant residual concentration.		
USE: This indicator assesses whet minimum regulatory limits in the needed to control microbial growth quality.	her the disinfectant distribution system h in the water distri	t residual concentrations are maintained above . A minimum disinfectant residual concentration is ibution system and is a general indicator of water		
ASSUMPTIONS/CHALLENGES	: None.			
CALCULATION:				
Number of occurren disinfectant residual con-	ces per sample per centration is less th	reporting period where the measured an the regulatory minimum concentration		
Where: disinfectant residual conce within the distribution and storage where the water age is highest.	Where: disinfectant residual concentrations are measured as a minimum at all locations as required within the distribution and storage systems, with emphasis on dead-end, low flow, or other locations where the water age is highest.			
Data needed: Measured disinfectat	nt residual concent	rations.		
RELATED INDICATORS: Water age and water demand.				
REPORTED VALUES IN INDUSTRY: The Safe Drinking Water Act specifies that the residual disinfectant concentration in the distribution system—measured as total chlorine, free chlorine, or chlorine dioxide—cannot be undetectable in more than 5% of the samples taken each month, for any two months that the system serves water to the public.				
Water Research Foundation project 4109 (Friedman et al. 2010) recommends the following disinfectant residual goals for an optimized distribution system:				
Minimum 0.2 mg/L free chlorine or 0.5 mg/L chloramines residual should be maintained in the distribution system.				
This performance goal should be met in 95% of distribution system samples. There should be no two consecutive months with any readings of zero disinfection residual.				

PERFORMANCE INDICATOR: Water Main Break Rate				
Level 1 Asset: Water Distribution	Tier 1	Goal Area: Reliability		
DEFINITION: The rate of water r year.	DEFINITION: The rate of water main breaks in the distribution system in breaks per 100 miles per year.			
USE: This indicator is widely used to characterize structural conditions of the distribution system. A high frequency of water breaks translates to frequent interruption of service. This indicator helps water utilities identify the need for a water main renewal plan. Water main break data in details may be effectively used to develop a water main renewal plan.				
ASSUMPTIONS/CHALLENGES: There are controversies about the definition of a water main break. This project defines a water main break as any point of loss of structural integrity along the main (including fittings, hydrants, valves, and joints) that results in measureable ongoing loss of water to the surrounding area. This would not include weeps and seeps that are acoustically difficult to find and considered unavoidable water loss. This would also not include service lines (utilities may want to consider a secondary indicator for service line breaks).				
In calculation of this indicator, it is assumed that impacts of all water main breaks are equal as a result. It provides a general condition of the distribution system and would not provide any specific information. Most water utilities keep a computerized track of water main breaks in some form. From this data, the number of water main breaks of individual pipe segments should be considered as an indicator for selecting pipes for renewal. Water main breaks due to a third party fault should be excluded. Water utilities are challenged to keep an accurate count of miles of main.				
Making a distinction between maj break, however, is when the utility	Making a distinction between major and minor breaks will make it very complicated. Definition of a break, however, is when the utility needs to dig up the pavement to repair the break.			
CALCULATION:	T 1 C /			
	ver of miles in the d	in breaks per year istribution system ± 100		
Where: all main breaks within the third party.	Where: all main breaks within the distribution system should be counted except for those caused by a third party.			
Data needed: Total number of leaks during the reporting period, total number of breaks during the reporting period, and total miles of distribution piping.				
RELATED INDICATORS: Number of outages, customer complaints, and pressure adequacy.				
REPORTED VALUES IN INDUSTRY: Deb, Hasit, and Grablutz (1995) recommended an average value of this performance indicator for North American Water Utilities of 20 breaks per 100 miles per year.				
Water Research Foundation project 4109 (Friedman et al. 2010) did not recommend any specific number of main breaks per 100 miles, instead offering guidance on data that should be collected. The data should include				
Identity, time, and physical location of the break; Control data such as the simple metric time water off and water restored time; and Cost of repair data.				

PERFORMANCE INDICATOR: Infrastructure Leakage Index (ILI)			
Level 1 Asset: Water Distribution	Tier 1	Goal Area: Efficiency	
DEFINITION: The Infrastructure (CARL, calculated from the Intern calculated from an equation develor Force).	Leakage Index (IL) national Water Bala oped by the Interna	I) is the ratio of the current annual real losses nce) to the unavoidable annual real losses (UARL, tional Water Association's Water Losses Task	
USE: These indicators assess wate any unauthorized water usage. The efficiency of the distribution syste	er loss due to leakaş ese performance inc m.	ge, breaks, fire demand, meter inefficiencies, and dicators are a measure of the condition and	
ASSUMPTIONS/CHALLENGES transmission mains, overflow from must be estimated. Apparent losse inaccuracies, and systematic data l	: Real water losses n storage tanks, and s consist of unauth handling errors, wh	consist of leakage from distribution and l leakage from service connections, all of which orized consumption, customer metering ich may be difficult to estimate.	
CALCULATION: <u>Real and apparent loss volume over the reporting period</u> <u>Number of service connections</u> The reporting period is usually one year. The method described in AWWA Manual M36 (AWWA 2009) should be used. Free water audit software is available from AWWA that performs the calculations described in Manual M36. Where: produced water volume, metered consumption, and the number of service connections are obtained from company records. The other parameters must be estimated. Data needed: Volume of water produced, authorized consumption volume, real loss volume, apparent loss volume, and the number of service connections.			
RELATED INDICATORS: Water main breaks.			
REPORTED VALUES IN INDUSTRY: Water Research Foundation project 4109 (Friedman et al. 2010) provides the following information on water loss: A water utility that has real losses close to its UARL value has an ILI value approaching 1.0. A number of water utilities with constrained water resources have established world-class leakage management and have ILI values just over 1.0. It is likely that many North American water utilities operate with ILI values several times their UARL value, and some have high losses with ILI values over 10.0 or ten times the amount of unavoidable leakage.			

PERFORMANCE INDICATOR: '	Water Distribution Cost	
--------------------------	-------------------------	--

Level 1 Asset: Water	Tier 2	Goal Area: Efficiency
Distribution		

DEFINITION: The cost to distribute treated water from the treatment plant to the customers per million gallons.

USE: This indicator assesses the cost to deliver treated water to customers and is a measure of the cost efficiency of the distribution system.

ASSUMPTIONS/CHALLENGES: The costs to deliver treated water to the customers involves pumping equipment, water storage facilities, pipe maintenance supplies, equipment, and personnel that may be involved in other functions within the water operation. In smaller operations where multiple job functions are performed, the costs for equipment and personnel working on the distribution system may not be accounted for separately from other water system functions. The total direct operations and maintenance (O&M) cost for water distribution is the total costs for salaries, direct benefits, and direct O&M costs associated with water distribution. Those water utilities that do not follow Governmental Accounting Standards Board (GASB) or Financial Accounting Standards Board (FASB) practices may find it difficult to determine accurate O&M costs.

CALCULATION:

Total direct cost for O&M of a distribution system

Volume of water put into the distribution system during the reporting period (MG)

This calculation would not include changes in the assets of the system. Labor, equipment, materials spent on repairs, and energy cost would be included but not those spent on new main replacements.

Where: Distribution system cost = total direct O&M costs to deliver treated water to customers through the distribution and storage systems.

Data needed: Total direct O&M costs for the distribution system and total volume of water put into the distribution system.

RELATED INDICATORS: None.

REPORTED VALUES IN INDUSTRY: None provided.

PERFORMANCE INDICATOR:	Water Storage			
Level 1 Asset: Water Distribution	Tier 2	Goal Area: Reliability		
DEFINITION: Number of hours the	hat water can be su	pplied from the storage.		
USE: This indicator assesses the a maintain pressure in the distribution	dequacy of water son system and to co	torage and is an indirect measure of the ability to ontinue to maintain service during brief outages.		
ASSUMPTIONS/CHALLENGES water age is specific to the configu- statement about what volume of tr not include bulk purchased water s not address the problems associate zones/service areas that are harder	ASSUMPTIONS/CHALLENGES: The impact of storage on the ability to maintain service and on water age is specific to the configuration and water use patterns of each distribution system. A general statement about what volume of treated water storage is optimal cannot be made. This indicator does not include bulk purchased water supplies that may be available to the water utility. This indicator does not address the problems associated with the spatial variation in storage. There may be pressure zones/cervice areas that are harder to serve with stored water			
CALCULATION: <u>Volume of treated water storage (MG)</u> × 24 hours Water pumpage per day (MG) Where: the volume of treated water is the sum of all storage facilities in the distribution system. Data needed: The total volume of treated water storage and average water pumpage per day.				
RELATED INDICATORS: Water age, disinfectant residual.				
REPORTED VALUES IN INDUSTRY: None provided.				
PERFORMANCE INDICATOR: distribution system)	Outages/Interrup	tions of Service (directly attributed to the		

Level 1 Asset: Distribution System	Tier 2	Goal Area: Reliability	
DEFINITION: See Outages/Interruptions of Service in the General Tier 1 indicators.			

PERFORMANCE INDICATOR: Energy Usage (directly attributed to the distribution system)			
Level 1 Asset: Distribution System	Tier 2	Goal Area: Efficiency	
DEFINITION: See Energy Usage in the General Tier 1 indicators. Energy consumed in kW·h in distribution system pumpage per MG of pumpage.			

PERFORMANCE INDICATOR:	Effective Hydrant	S			
Level 1 Asset: Water Distribution	Tier 2	Goal Area: Reliability			
DEFINITION: The number of effective hydrants versus the total number hydrants in the distribution system. <i>Effective</i> is defined by ISO (International Organization for Standardization) criteria to deliver adequate flow and pressure.					
USE: This indicator assesses the p for fire fighting.	erformance and rel	iability of the distribution system to provide water			
ASSUMPTIONS/CHALLENGES	: None.				
CALCULATION: <u>Total number of effective hydrants in the distribution system</u> Total number of fire hydrants in the distribution system Data needed: The number of effective hydrants in the distribution system and the total number of fire hydrants in the distribution system.					
RELATED INDICATORS: Pressure adequacy.					
REPORTED VALUES IN INDUSTRY: None provided.					
PERFORMANCE INDICATOR:	Valve Operations				

	· · · · · · · · · · · · · · · · · · ·	
Level 1 Asset: Water Distribution	Tier 2	Goal Area: Reliability
DEFINITION: The number of full	v functional valves	divided by the total number of valves

USE: This indicator assesses the ability to efficiently isolate portions of the distribution system for repairs.

ASSUMPTIONS/CHALLENGES: This indicator requires a thorough knowledge of the distribution system layout and the locations of all control valves.

CALCULATION:

Total number of fully functional valves in the distribution system

Total number of valves

Where: a *fully functional valve* is defined as a valve that is fully operational and with the ability to isolate mains and control the flow of water in the distribution system.

Data needed: The total number of fully functional valves and the total number of valves. Ancillary valves such as shutoff valves on hydrant tees and service lines are not included in this indicator.

RELATED INDICATORS: Downtime per repair, customer complaints.

REPORTED VALUES IN INDUSTRY: None provided.

PERFORMANCE INDICATOR: Distribution Coliform Violations

Level 1 Asset: Water	Tier 2	Goal Area: Water quality
Distribution		

DEFINITION: The number of times when there is a violation of the Total Coliform Rule over the reporting period.

USE: This indicator assesses the quality of water in the distribution and storage system as well as compliance with the Total Coliform Rule.

ASSUMPTIONS/CHALLENGES: The number of minimum samples is in compliance with the Total Coliform Rule and related to the number of customers served by the distribution system. The location of the monitoring points is somewhat arbitrary but should be in areas of concern: dead ends, for example. There are three levels (tiers) of public health risk defined in the regulation. These require different responses to the occurrence of positive coliform samples. The indicator does not distinguish between Tier 1, 2, or 3 violations.

CALCULATION:

Number of positive total coliform samples collected during the reporting period. This could also be expressed as a percentage.

Where: samples are collected at the locations specified by the written Sample Siting Plan for the system.

Data needed: Total coliform sample results taken at the required frequency and locations.

RELATED INDICATORS: Regulatory compliance rate and percentage of time that regulated water quality parameters meet regulatory requirements

REPORTED VALUES IN INDUSTRY: None provided. The goal is for no violations of the Total Coliform Rule requirements.

RELATED INDICATORS: Disinfectant residual.

REPORTED VALUES IN INDUSTRY: The Safe Drinking Water Act defines violations of the Total Coliform Rule as

Any fecal coliform positive or *E. coli* positive followed by a total-coliform positive, Any repeat sample that is fecal coliform positive,

More than one routine or repeat sample per month that is total coliform positive for systems collecting fewer than 40 samples per month, or

More than 5% of routine and repeat samples in a month that are total coliform positive in systems collecting at least 40 samples per month.

PERFORMANCE INDICATOR: Unplanned Maintenance Hours (as a percentage of total maintenance hours)

Level 1 Asset: Water	Tier 2	Goal Area: Reliability
Distribution		

DEFINITION: Unplanned (breakdown) hours = number of hours spent by maintenance staff on high and low emergency work (time spent repairing equipment after it has broken down). High emergency work covers breakdowns that may result in loss of service or other severe detriment to the utility (e.g., a spill), where maintenance must be deployed as soon as possible. Low emergency work covers breakdowns that may not result in loss of service or are protected by equipment redundancy, where maintenance shall be deployed at the earliest convenience. Include both internal and external maintenance hours (e.g., some systems outsource all breakdown work; therefore, they should estimate all maintenance hours, both internal and external).

USE: One of the primary objectives of most maintenance programs is to improve the ratio of scheduled to unscheduled work. The underlying assumption is that scheduled and planned maintenance work can be accomplished more efficiently and productively than unscheduled or unplanned work. When work is scheduled and planned, productivity and efficiency can be ensured. The fact is, however, that breakdowns and emergencies do happen from time to time, and utilities must be prepared to respond. In these events, the benefit of planning and scheduling may be suspended, and work proceeds regardless. The objective of a good maintenance system is to ensure that only true emergency work is conducted in an unscheduled and/or unplanned manner. It is therefore important to plan for unscheduled maintenance. This in effect allocates a certain percentage of time and resources to unspecified emergency work so that the remaining corrective and preventive maintenance can be accurately scheduled.

ASSUMPTIONS/CHALLENGES: The data needed for this performance indicator requires that a welldefined system of work-order (WO) priorities be utilized within the maintenance planning function. Typical WO classification systems usually include emergency (unplanned) WOs, preventive maintenance WOs (planned), and routine corrective WOs (planned), as well as other maintenance WOs for maintenance that do not fall in any of the other three categories.

This indicator should preferably be evaluated on a process basis (i.e., raw water transmission, treatment, distribution).

CALCULATION:

Unplanned maintenance hours

Total maintenance hours (%)

There is no direct calculation of unplanned maintenance hours other than that the total maintenance hours for the year is made up of the sum of unplanned, preventive, planned/scheduled, and other hours, as follows:

Total maintenance hours = Unplanned maintenance hours + Preventive maintenance hours + Planned (scheduled) hours + Other maintenance hours

Data needed:

Unplanned (breakdown) hours = number of hours spent by maintenance staff on high and low emergency work (time spent repairing equipment after it has broken down). High emergency work covers breakdowns that may result in loss of service or other severe detriment to the utility (e.g., spill), where maintenance must be deployed as soon as possible. Low emergency work covers breakdowns that may not result in loss of service or are protected by equipment redundancy, where maintenance shall be deployed at the earliest convenience. Include both internal and external maintenance hours (e.g., some systems outsource all breakdown work; therefore, they should estimate all maintenance hours, both internal and external).

- Preventive maintenance hours = number of hours spent on regularly scheduled and periodic maintenance as directed by vendor (time spent preventing equipment breaking down as specified by the vendor). Include both internal and external maintenance hours (e.g., some systems outsource all breakdown work; therefore, they should estimate all maintenance hours, both internal and external).
- Planned (scheduled) hours = number of hours spent by maintenance staff on routine maintenance tasks that are identified through observation, etc. (time spent maintaining equipment after it is observed that the equipment is at risk of breaking down). Include both internal and external maintenance hours (e.g., some systems outsource all breakdown work; therefore, they should estimate all maintenance hours, both internal and external).
- Other hours = number of hours spent by maintenance staff on minor, low-priority tasks that can be assigned during slow periods and any work that does not fit into the other maintenance work categories (time spent on fill in maintenance work). Include both internal and external maintenance hours (e.g., some systems outsource all breakdown work; therefore, they should estimate all maintenance hours, both internal and external).

RELATED INDICATORS: None.

REPORTED VALUES IN INDUSTRY: None.

PERFORMANCE INDICATOR: Emergency Service Line Repairs and Replacements per Service Connection

Level 1 Asset: Water	Tier 2	Goal Area: Reliability
Distribution		

DEFINITION: Repairs to service connections due to breakdowns (either high or low emergency). High emergency breakdowns may result in loss of service or other severe detriment to the utility (e.g., spill), where maintenance must be deployed as soon as possible. Low emergency breakdowns may not result in loss of service or are protected by equipment redundancy; where maintenance shall be deployed at the earliest convenience. Only includes repairs to the service connections for which the municipality is responsible.

Service connections is defined as the pipe between the main and the property line.

USE: This performance indicator is a measure of the frequency that service connections need to be repaired or replaced and is also an indicator of the general condition of service connections.

ASSUMPTIONS/CHALLENGES: Some municipalities are legally responsible for maintaining the entire length of the service connection from the water main to the house, whereas others are only responsible for maintaining the service connection from the water main to the property line.

CALCULATION:

Number of emergency service connection repairs and replacements Total number of service connections

Data needed:

Number of emergency service connection repairs and replacements due to breakdowns (either high or low emergency).

Total number of service connections = number of residential service connections + number of institutional, commercial, and industrial service connections. Service connections are the pipes that lead from the distribution water main to the customer's plumbing.

RELATED INDICATORS: Unplanned maintenance hours; number of customer complaints.

REPORTED VALUES IN INDUSTRY: None.

Water Finance

RESEARCH FOUNDATION

The 2012 Comparative Review

Municipal Maintenance and

Infrastructure Asset Management Systems

This study includes a comparative review of Accela, Agile Assets, Azteca System's Cityworks, Cartegraph, Cityview, Energov, IBM's Maximo, Infor/Hansen, Lucity/GBA, Maintenance Connection, Novotx's Elements, Oracle, Pubworks and Vueworks.

The 2012 Comparative Review of Municipal Maintenance and Infrastructure Asset Management Systems

ABSTRACT: The United States and Canada face tremendous capital outlays to repair and replace aging municipal and utility infrastructure. Technology is required to better manage the complex decision making process for maintenance, operational and capital investments and resource allocation. This study conducted in 2012 comprises a comparative review of the major computerized maintenance management and infrastructure asset management systems used by municipal governments and water and wastewater utilities in the United States and Canada. The objective of this study is to provide municipal elected officials, public works directors, infrastructure asset managers, maintenance managers, information technology managers, finance directors and procurement staff an overview of municipal maintenance management and infrastructure asset management software in a comparative format in preparation for a request for qualifications or proposals. The comparative criteria includes software costs, vendor services, support, specialization, work orders, inventory control, licensing and permitting, condition assessment, risk management, asset inventory, GIS mapping, Esri GIS integration, 311 systems, mobile devices, Esri GIS ROI and future industry trends. The comparative analysis of core maintenance management and infrastructure asset management functions was completed for the following 14 software systems in alphabetic order: Accela, Agile Assets, Azteca System's Cityworks, Cartegraph, Cityview, Energov, IBM's Maximo, Infor/Hansen, Lucity/GBA, Maintenance Connection, Novotx's Elements, Oracle, Pubworks and Vueworks. Also included in this study, but not in a comparative format is a discussion on Esri GIS as the recommended platform for municipal mapping applications; and Innovyze software offerings for an advanced wet infrastructure/underground network hydraulic modeling decision analytics approach.

Water Finance Research Foundation WFRF www.waterfinanceRF.org

1. SUMMARY RESULTS

The summary results of the 2012 comprehensive comparative review and study ranks Azteca System's Cityworks maintenance management and infrastructure asset management system as the top selection for municipal and utility use. Cityworks has demonstrated strength and longevity in the municipal and utility market place for the last 15 years with a highly developed work order management system, and can fully leverage an organization's (ROI) investment in the Esri GIS and the ArcGIS geodatabase as the asset repository reducing implementation and long-term maintenance cost of ownership issues. Cityworks maintains some of the most advanced LGT (Local Government Templates) with over 630 work order templates, 150 service requests with detailed condition assessment inspections. The licensing and permitting functionality is further enhanced by the Esri GIS Centric approach in developing connectivity of all public assets, infrastructure and activities.

Software	Functional Score	Price Score*
Cityworks	99	91
Oracle	94	79
Maximo	93	78
Accela	92	82
Infor/Hansen	89	79
Energov	88	82
Cartegraph	87	81
Lucity (GBA)	82	78
Pubworks	65	68
Maintenance	61	61
Vueworks	61	61
Agile Assets	52	58
Elements	50	56
Cityview	33	42

*Adjusted Price Score weighted 20%

2. INTRODUCTION

In recent years municipalities and water and wastewater systems have struggled significantly in managing the complex and diverse assets that are within their jurisdictions for which they are accountable. Great strides have been made to develop programs and systems to improve cost efficiencies but core work order management software system functionality by itself did not address the growing needs of infrastructure asset management practices. During the most recent five years since the worldwide economic decline, which in part continues today, municipalities and utilities at all levels have faced severe revenue short falls. The actions taken to maintain baseline services involved delaying hundreds of millions of dollars a year in needed maintenance activities and deferring critical capital projects. Efforts made at the state, regional, county, and local levels to better manage assets and allocate limited resources to high profile failing assets were met with a high degree of frustration due to inconsistent and outdated practices, neglected data tracking and storing, and a lack of data integration abilities with silo/stranded data throughout many departments.

Asset Management

Infrastructure asset management programs, offered by different consulting firms, should still be focused on managing assets in a way in which the investment for each asset can be optimized producing a reduction in capital budgets and operating expenditures, an efficient and cost effective maintenance program based on risk and an overall reduction in the cost of capital. One common problem has been when engineering drives the capital agenda and the needs of operations and maintenance are overlooked. Likewise, when the financial tracking and planning functions are also neglected, true enterprise asset management decision making cannot occur. A multidisciplinary approach at a corporate level is highly recommended to create a consistent management-wide effort to guide investments and resource allocation.

Comprehensive asset management professionals understand these concepts and have a global perspective and the ability to customize solutions to each municipality. These professionals possess the expertise in and understanding of the International Infrastructure Management Manual (IIMM), which is essentially the bible of asset management. This training is critical in establishing the foundational knowledge of the comprehensive process of modern asset

WaterFinanceRF.org

management. The basic foundation as well as the expectations should be that asset management as a philosophy is a process of continuous improvement and change.

In the United States and Canada, the definition of asset management will continue to be defined by the software tools each organization selects as a means to improve asset performance and manage costs. A reduction of cost can be defined as either a short-term gain or a long-term gain or both. The logic entails that if an asset is not maintained correctly it can fail prematurely. Likewise, an asset replaced prematurely wastes a useful asset and as a result improved performance and investment decision making does not occur. Informed decision making can reduce the overall cost of the asset and function to the benefit of the taxpayers. This process is data intensive and requires the necessary policies, leadership, and structure to meet sustainable infrastructure objectives. The goal to achieve a sense of sustainable infrastructure requires an overall plan including asset management planning, which in turn also requires a financial plan, a technology plan, a service delivery plan, and integration with community planning efforts.

Public Asset Management

The concept of public asset management strives to combine all infrastructure assets and landbased assets and functions to effectively manage the social and environmental goals of the community while offering an improved management decision making process with public review, approval and justification. The current trend is that municipal utilities as capital-intensive enterprise funds will initiate asset management programs during the economic decline and will lead their general city management counterparts of public works, streets, facilities, fleet, parks, signage, bridges, cemeteries, ports and marinas, into an era of sustainability and infrastructure asset management. The expansive nature of the process places a high level of importance on the technology which needs to be applied in a way to gain the greatest benefit overall.

Computerized Maintenance Management Systems (CMMS) and Infrastructure Asset Management Software implementation trends for municipalities demonstrate initial progress in business enterprise funds like water, wastewater, and storm drains migrating efficiencies and practices to other municipal departments. This system functionality migration trend will continue and can be more readily managed with a GIS centered strategy.

3. METHODOLOGY

The comparative analysis of core maintenance management and infrastructure asset management functions was completed for the following 14 software systems in alphabetic order: Accela, Agile Assets, Azteca System's Cityworks, Cartegraph, Cityview, Energov, IBM's Maximo, Infor/Hansen, Lucity/GBA, Maintenance Connection, Novotx's Elements, Oracle, Pubworks and Vueworks.

The comparative criteria includes software costs, vendor services, support, specialization, work orders, inventory, licensing and permitting, condition assessment, risk management, asset inventory, GIS mapping, Esri GIS integration, 311 systems, mobile devices and Esri GIS ROI taking into consideration future industry trends. The four major functional categories include 1) Company/Service, 2) Work Management, 3) Asset Management, and 4) GIS.

Each major component is ranked 1-5 with a 5 as the highest score. A zero represents a function not contained in the software. The Overall Functional Score assumes an even weighting of the four major functional areas.

COMPANY SERVICES	ASSET MANAGEMENT
SERVICES/IMPLEMENTATION	CONDITION ASSESSMENT
SUPPORT/TRAINING	RISK MANAGEMENT
SPECIALIZATION	ASSET
	INVENTORY/HIERARCHY
WORK ORDERS	GIS
WORK ORDERS WORK ORDERS AND WORK FLOW	GIS GIS MAPPING
WORK ORDERS WORK ORDERS AND WORK FLOW INVENTORY	GIS GIS MAPPING Esri GIS INTEGRATION
WORK ORDERSWORK ORDERS AND WORK FLOWINVENTORYLICENSING AND PERMITS	GIS GIS MAPPING Esri GIS INTEGRATION 311 SYSTEMS
WORK ORDERSWORK ORDERS AND WORK FLOWINVENTORYLICENSING AND PERMITS	GIS GIS MAPPING Esri GIS INTEGRATION 311 SYSTEMS MOBILE DEVICES

4. REVIEW OF SERVICES

The functionality of the core components of a software application is very important, however, the actual success and level of benefit gained is a direct result of the work and support around the planning, implementation, testing and training. The ability for the software vendor to provide enhanced support and training to ensure the successful implementation is critical. In the area of asset management, data conversion and a specialization in specific infrastructure types can ensure a higher degree of utilization of software capabilities.

Company/Services

The Company/Service functional category includes Vendor Services and Implementation, Support and Training Services and Company Strength and Specialization. A ranking score ranging from 1-5 was assigned to software for each of the 3 areas. A "5" score represents the highest functionality, while a low score represents a marginal level of functionality. If software did not have functionality in a given area then a zero was assigned and calculated into the overall scoring.

Services		Support		Specialization	
Cityworks	5	Cityworks	5	Cityworks	5
Cartegraph	5	Cartegraph	5	Cartegraph	5
Maximo	5	Maximo	5	Maximo	5
Oracle	5	Infor/Hansen	5	Oracle	5
Accela	4	Lucity (GBA)	5	Accela	4
Energov	4	Oracle	5	Energov	4
Infor/Hansen	4	Accela	4	Infor/Hansen	4
Lucity (GBA)	4	Energov	4	Lucity (GBA)	4
Elements	3	Maintenance	4	Maintenance	4
Maintenance	3	Agile Assets	3	Agile Assets	3
Vueworks	3	Cityview	3	Cityview	3
Agile Assets	2	Elements	3	Elements	3
Cityview	2	Pubworks	3	Pubworks	3
Pubworks	2	Vueworks	3	Vueworks	3

S WaterFinanceRF.org

5. REVIEW OF WORK MANAGEMENT

A robust Computerized Maintenance Management System (CMMS) with work orders providing the ability to separate planned or unplanned maintenance costs, builds life cycle cost history, records actual direct costs of the activity, documents the procedures followed, notes the failure mode and primary cause of failure with comments on indirect costs and impacts to customers and possible unproductive time. A basic CMMS alone is not an asset management system. All of this data enables additional possibilities of failure, causal, consequence and efficiency analysis.

S WaterFinanceRF.org

Work Management

The Work Management functional category consisted of Work Orders and Work Flow, Inventory Control, and Licensing and Permitting. A ranking score ranging from 1-5 was assigned to software for each of the 3 areas. A "5" score represents the highest functionality, while a low score represents a marginal level of functionality. If software did not have functionality in a given area then a zero was assigned and calculated into the overall scoring.

Work Orders		Inventory		License/Permit	S
Cityworks	5	Cityworks	5	Cityworks	5
Accela	5	Accela	5	Accela	5
Energov	4	Maximo	5	Cityview	5
Infor/Hansen	4	Lucity (GBA)	5	Energov	5
Maintenance	4	Pubworks	5	Cartegraph	4
Maximo	4	Infor/Hansen	5	Lucity (GBA)	4
Lucity (GBA)	4	Oracle	5	Maximo	4
Cartegraph	4	Cartegraph	5	Infor/Hansen	4
Elements	4	Elements	5	Oracle	4
Oracle	4	Energov	4	Elements	3
Pubworks	4	Maintenance	4	Pubworks	0
Vueworks	4	Vueworks	4	Maintenance	0
Agile Assets	3	Agile Assets	3	Vueworks	0
Cityview	0	Cityview	0	Agile Assets	0

WaterFinanceRF.org

11

6. REVIEW OF ASSET MANAGEMENT

Condition assessment can be defined as a method that establishes the current condition of assets as a means of prioritizing and forecasting maintenance and rehabilitation efforts. Condition assessment can help managers understand the level of asset deterioration and the risk management impact on the probability and consequence of failure. The Asset Inventory or Registry is central to any asset management program or strategy. An asset register is a systematic recording of all assets an organization owns or for which it has responsibility.

6. REVIEW OF ASSET MANAGEMENT | Municipal Maintenance and Infrastructure Asset Management Systems

Asset Management

Asset Management functional category includes Condition Assessment capabilities, Risk Management, and Asset Inventory and Hierarchy. A ranking score ranging from 1-5 was assigned to software for each of the 3 areas. A "5" score represents the highest functionality, while a low score represents a marginal level of functionality. If software did not have functionality in a given area then a zero was assigned and calculated into the overall scoring.

Condition Assessment		Risk Management		Asset Inventory	
Cityworks	5	Cityworks 5		Cityworks	
Cityview	0	Cityview	0	Cityview	0
Elements	0	Elements	0	Accela	5
Accela	5	Accela	5	Cartegraph	4
Cartegraph	4	Cartegraph	4	Energov	5
Energov	5	Energov	5	Maximo	5
Maximo	5	Maximo	5	Oracle	5
Infor	5	Infor	5	Infor	4
Oracle	5	Oracle	5	Lucity (GBA)	4
Lucity (GBA)	4	Lucity (GBA)	4	Pubworks	4
Maintenance	4	Maintenance	4	Agile Assets	3
Pubworks	4	Pubworks	4	Elements	3
Agile Assets	3	Vueworks	4	Maintenance	3
Vueworks	3	Agile Assets	3	Vueworks	3

7. REVIEW OF GIS

Investing in a complete GIS system with full functionality produces an overall reduction in operating and maintenance costs and can become the foundation of a lower cost asset management system. Technology has increased the operating efficiencies of municipalities and utilities by converting manual office process from paper to an intelligent automation system. GIS is a unique system of hardware, software and data used to create, store, edit, organize, manipulate and analyze information within a geographic area. GIS offers the ability to visualize models of the physical infrastructure and related activities in a map view.

GIS

The GIS (Geographical Information System) functional category consists of GIS Mapping features, Esri GIS integration, 311 System Abilities, Mobile Devices Enhancements, and Esri GIS ROI (Return on Investment) considerations. A "5" score represents the highest functionality, while a low score represents a marginal level of functionality. If software did not have functionality in a given area then a zero was assigned and calculated into the overall scoring.

GIS Mapping		Esri Integration		311 System		Mobile Devices	
Cityworks	5	Cityworks	5	Accela	5	Accela	5
Accela	5	Accela	4	Cartegraph	5	Maximo	5
Cartegraph	5	Cartegraph	4	Energov	5	Infor/Hansen	5
Elements	5	Energov	4	Infor/Hansen	5	Oracle	5
Energov	5	Maximo	4	Oracle	5	Cityworks	4
Maximo	5	Infor/Hansen	4	Pubworks	5	Agile Assets	4
Infor/Hansen	5	Lucity (GBA)	4	Cityworks	4	Energov	4
Lucity (GBA)	5	Oracle	4	Maximo	4	Cartegraph	3
Oracle	5	Agile Assets	3	Lucity (GBA)	4	Cityview	3
Vueworks	5	Elements	3	Vueworks	4	Lucity (GBA)	3
Agile Assets	4	Maintenance	3	Cityview	3	Maintenance	3
Cityview	4	Pubworks	3	Agile Assets	2	Pubworks	3
Pubworks	4	Vueworks	3	Elements	0	Vueworks	2
Maintenance	3	Cityview	0	Maintenance	0	Elements	0

GIS has been able to meet the increased demand for mobility and information sharing. Many applications for asset maintenance and management purposes have been developed by software companies in order to improve the transactional cost of public accountability. Some of these features can also be accessed through 3rd party vendors. Municipalities and utilities have benefited from 311 citizen information, request and tracking systems as well as mobile remote business functionality via handheld mobile devices. 311 capabilities and mobile device initiatives are continually improving for top vendors.

Esri GIS ROI

GIS offers a return on investment (ROI) and these operational savings will continue almost indefinitely. Municipalities and utilities in the United States and Canada rely on the industry leader Esri (Environmental Systems Research Institute) GIS for their GIS software. Local governments and utilities benefit overall with standardization and common open standards for consistency which helps achieves lower-costs with the economies of scale. Under this GIS Centric approach, the Esri GIS ArcGIS geodatabase is the feature database for storing the all asset attributes. Additionally, there is no redundancy for data storage (no reliance on views, data mapping, database triggers, or "transparent" links). All feature (asset) data is fully user-definable and customizable without vendor support. This would include common standardization absent expensive non-proprietary feature data model format, including data names, fields, tables, relationships, and other data design elements.

Esri GIS ROI		Esri PARTNER LEVEL
Cityworks	5	Platinum
Accela	3	Gold
Cartegraph	3	Silver
Energov	3	Gold
Maximo	3	-
Infor/Hansen	3	member-
Lucity (GBA)	3	Gold
Oracle	3	-
Elements	2	-
Maintenance	2	-
Pubworks	2	-
Vueworks	2	-member
Agile Assets	1	-
Cityview	1	-
S WaterFinanceRF.org

8. REVIEW OF COST FACTORS

Overall Scores and Rankings normally are based on the functional categories scores and averages. Under this review, the four major functional categories were weighted evenly. The element of cost adds additional complexity to the analysis. Most municipalities and utilities will normally focus on the core functionality of the software in order to meet all current and future business needs before reviewing bids or prices. The price component can be challenging considering there are the basic user licenses, software and maintenance costs and agreements combined with phased implementations, modular selections, data clean up, data conversion, systems integrations, testing and training. This study focuses on the common costs; however, it is very important to note that if various modules are selected and integrated, the costs of implementation are normally significant higher.

Cost Factors	(5	is a high cost)
Agile Assets	2	Low
Cityview	2	Low
Elements	2	Low
Pubworks	2	Low
Cityworks	3	Average
Cartegraph	3	Average
Energov	3	Average
Lucity (GBA)	3	Average
Maintenance	3	Average
Vueworks	3	Average
Accela	4	High
Infor/Hansen	4	High
Maximo	5	High
Oracle	5	High

S WaterFinanceRF.org

Cost Factors

Likewise, when system integration and conversion is required for many different systems and several modules, the initial implementation and long-term system synchronization and maintenance of redundant databases can raise the total cost of ownership significantly. This is very true in the area of licensing and permitting. Every municipality and utility has a degree of data clean up due to neglect or inconsistent policies and practices concerning work order histories and inspection recording and asset data collection. One specific area of concern has been the development of the asset inventory and the connectivity and integration with GIS software.

9. Esri GIS ArcGIS: Geodatabase management

ArcGIS for Desktop includes comprehensive professional GIS applications that support a number of GIS tasks, including mapping, data compilation, analysis, geodata and image management, and geographic information sharing. ArcGIS for Desktop is the platform that GIS professionals use to manage their GIS workflows and projects and to build data, maps, models, and applications. It is also the starting point and the foundation for deploying GIS across organizations and onto the web. It is used to publish and share geographic information with others.

ArcGIS for Server includes capabilities for managing multiuser geodatabases in a number of DBMSs. When you need a large multiuser geodatabase that can be edited and used simultaneously by many users or that can be synchronized across many copies (replicas) of the database, the geodatabase provides a good solution.

ArcGIS for Server adds the ability to manage shared, multiuser geodatabases as well as support for a number of critical multiuser database workflows. The ability to leverage your organization's enterprise relational database is a key advantage. Multiuser, transactional geodatabases work with a variety of DBMS storage models (for example, IBM DB2, Informix, Oracle, PostgreSQL, and SQL Server). Geodatabases take full advantage of underlying DBMS architectures to support the following:

- Extremely large, continuous GIS databases
- Many simultaneous users
- Long transactions and versioned workflows
- Relational database support for GIS data management (providing the benefits of a relational database for scalability, reliability, security, backup, integrity, and so forth)
- SQL types for spatial in all supported DBMSs (Oracle, SQL Server, PostgreSQL, Informix, and DB2)
- High performance that can scale to a very large number of users

DBMSs are efficient at retrieving and working with records containing the type of large geometry elements required for GIS data. In addition, GIS database sizes can be much larger, and the number of supported users greater, than with file-based GIS datasets.

10. PROFILE: Azteca Systems CITYWORKS

10. PROFILE: ACCELA

10. PROFILE: AGILE ASSETS

10. PROFILE: CARTEGRAPH

10. PROFILE: ELEMENTS

10. PROFILE: ENERGOV

10. PROFILE: INFOR/HANSEN

10. PROFILE: LUCITY (GBR)

10. PROFILE: MAINTENANCE CONNECTION

10. PROFILE: IBM MAXIMO

10. PROFILE: ORACLE

10. PROFILE: PUBWORKS

10. PROFILE: VUEWORKS

10. PROFILE: CITYVIEW

WaterFinanceRF.org

11. WATER and SEWER UTILITIES: INNOVYZE

Innovyze is a leading global provider of wet infrastructure business analytics software solutions designed to meet the technological needs of water and wastewater utilities, government industries, and engineering organizations worldwide.

Underground infrastructure is rapidly deteriorating and many utilities struggle with developing a rehabilitation and replacement program that addresses the most critical pipes in the system. Many capital improvement programs spend millions of dollars annually, but often do little to lower total system risk. CapPlan Water offers utilities the tools in one off-the-shelf software package to build or refine the capital improvement plans to provide maximum benefit for the lowest cost. Determining the likelihood of failure for a pressurized underground water pipe is a critical task. CapPlan Water combines infrastructure, hydraulic, spatial, and historical data from numerous sources to estimate for likelihood of failure. Understanding the consequences of a pipe failing is critical to determining its replacement priority. CapPlan Water has powerful tools to assess the hydraulic, geographic, spatial, and public relations criticality of each pipe in the system—including automatically taking each pipe out of service and determining the hydraulic and water quality consequences. A Risk Factor is determined for each pipe based on the Likelihood and Consequence of Failure. CapPlan Water has a wide range of budgeting options available to evaluate the highest priority pipes within existing budgets and to determine necessary budgets over the long-term to mitigate high risk levels.

12. REFERENCES

The Water Research Foundation would like to acknowledge and thank the researchers and contributors to this study.

- American Public Works Association (APWA) members www.apwa.net
- California Society of Municipal Finance Officers (CSMFO) members www.csmfo.org
- Government Finance Officers Associations (GFOA) members www.gfoa.org
- Interviews of software marketing and technical staff at industry conferences.
- http://resources.arcgis.com
- http://www.fhwa.dot.gov
- http://www.nrc-cnrc.gc.ca/eng/index.html
- www.accela.com
- www.agileassets.com
- www.cartegraph.com
- www.cityworks.com
- www.elementsxs.com
- www.energov.com
- www.esri.com
- www.infor.com
- www.infotivity.com
- www.innovyze.com
- www.lucity.com
- www.maintenanceconnection.com
- www.msgovern.com
- www.oracle.com
- www.oracle.com
- www.plantservices.com
- www.pubworks.com
- www.reliabilityweb.com
- www.vueworks.com
- www-01.ibm.com

WFRF

The Water Finance Research Foundation (www.Water FinanceRF.org) is a non-profit organization dedicated to finding solutions which help local governments and utilities address the challenges of aging infrastructure, funding and a declining workforce. The WFRF supports and provides research, surveys, analysis, publications and training concerning best practices for municipal and utility management.

The WFRF promotes municipal infrastructure asset management practices for state, county and local governments which increase efficiencies while reducing long-term operations, maintenance, and capital costs. A special focus is on wet infrastructure which includes water, wastewater, storm drain and reuse. A core program also includes creating opportunities for the next generation to gain knowledge and experience through research and publication opportunities. The WFRF also strives to help municipalities and utilities explore financing and funding solutions which includes rate and fee increases, debt refinancing, private-public partnerships, grants and other innovative programs.

The Water Finance Research Foundation is proud to sponsor and promote in 2013, The American Public Infrastructure Asset Management Association (API-AMA). API-AMA focuses on traditional municipal infrastructure asset management combined with public asset management (the connectivity of assets with business activities and citizens). The evolution and power of GIS and other technologies has increased our ability to translate data into intelligence for improved resource investment decision making.

The American Public Infrastructure Asset Management Association API-AMA represents:

- Public Works Managers
- Municipal and Utility Asset Managers
- GIS Professionals
- CMMS (Computerized Maintenance Management Systems) Personnel
- Asset Management and Work Order Maintenance Management Software Managers
- Risk Management Managers
- Infrastructure and Design Engineers
- Capital Funding and Budget Approval Professionals
- Economic Development and Growth Planning Managers

LEGAL NOTICE

Please be advised, this study and survey was completed based on numerous sources including third parties and has not been independently verified. Software is continually updated and revised and the information and functionality assessment is evaluated at a point in time and does not represent future enhancements. WFRF assumes no legal liability or responsibility for the accuracy, completeness, or usefulness of any information, nor does the WFRF represent that its use would not infringe on any privately owned rights. This study may include facts, views, opinions and recommendations of individuals and organizations deemed of interest and assume the reader is sophisticated in this industry and will make their own independent decisions. Users waive any rights it might have in respect of this study under any doctrine of third-party beneficiary, including the contracts (Rights of Third Parties) Act 1999. The use of this study is at the users' sole risk and no reliance should be placed upon any other oral or written agreement, representation or warranty relating to the information herein.

THIS STUDY IS PROVIDED ON AN "AS-IS" BASIS, WFRF DISCLAIMS ALL WARRANTIES OF ANY KIND, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. WFRF, NOT ITS MEMBERS, AFFILIATES, SERVICE PROVIDERS, OFFICERS, DIRECTORS, OR EMPLOYEES SHALL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO THIS REPORT OR RESULTING FROM THE USE OF THIS REPORT, INCLUDING BUT NOT LIMITED TO DAMAGES FOR LOSS OF PROFITS, FUTURE PROFITS, USE, DATA OR OTHER TANGIBLE DAMAGES, EVEN IF SUCH PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE CONTENT OF THIS STUDY SHOULD NOT BE USED FOR ANY UNLAWFUL OR UNINTENDED PURPOSE.

Appendix 5-F

Excerpt on Cheyenne BOPU from DRAFT

"Legacy of Manganese Accumulation in Water Systems: Assessment, Consequence and Prevention", Water Research Foundation (WRF), 2013.

The information for the Utility C case study was obtained from various sources, including: responses to the project utility questionnaire, site visit and interview notes (Dec-2012), case study information, participation in other WRF projects, O&M practices and observations, distribution system water quality from recent consultant investigations and reports, and responses to further Project Team questions. Utility C was selected for a case study because it has a long history of discolored water events and has known Mn accumulation in the raw water feed lines and distribution system piping. This utility has taken significant measures to prevent additional Mn from entering the distribution system. These projects have been very successful. However, the utility does continue to experience on-going challenges related to colored water events. This is attributed to Mn accumulation and associated periodic destabilization/release events. Utility C regularly performs distribution system monitoring and pipe cleaning practices to control the occurrence of legacy Mn.

For this project, Utility C performed four sampling of hydrant flushes to supplement data provided by the survey and case study interview. Water quality samples were obtained during the late spring before the annual system flush and prior to peak summer demands. Samples were taken from four locations within the system that were likely to carry water that traveled through the primary treated water distribution line which has shown evidence of Mn accumulation. All sample locations were taken off the same diameter main line, had similar average velocities (<0.3 feet per second) and similar system pressure (113-145 psi). The objective of the proposed field testing was to determine the total mass of Mn released and which compounds are released into the water supply during typical operational flushing and colored water events.

Customer Satisfaction

Documentation of Dissatisfaction

Perceived

Utility C has been experiencing colored water events since 1995. The first known event related to Mn corresponded with the construction of a new water storage tank located at the head of the distribution system down stream of existing wells. At this time Utility C had no Mn treatment in place, although free chlorine was used for disinfection and to provide disinfectant residual. The utility believes that the new tank provided enough additional detention time to permit the oxidation of soluble Mn by free chlorine. They believe particulate Mn formed in the tank, would periodically enter the distribution system, causing colored water events.

Utility C reported that consumer confidence was impaired following major colored water events in 2002 and in 2006. The event in 2002 corresponded to start up of a new WTP during which they changed the Mn treatment process. The 2002 Mn event occurred during the conditioning of the new mixed media filters with permanganate in order to prepare the filters for Mn removal by surface oxidation and sorption (e.g. greensand effect). The utility was not sure if the colored water event was somehow due to the passage of permanganate used during the conditioning process or from background Mn which was not removed during the start-up process.

The event in 2006 was primarily attributed to high Mn concentrations in the raw water supply. In 2006 the utility changed its water supply management strategy in the terminal reservoir

supplying the WTP. This change in how and which water source was being supplied to the reservoir resulted an intense period of thermal stratification in the reservoir. High concentrations of soluble Mn were released during this period which overwhelmed the removal capacity of the WTP. Hence high Mn concentrations passed into the distribution system, causing a widespread color event. Improvements to the raw water supply system made in 2009, primarily consisting of the addition of a hypolimnetic aeration system in the terminal reservoir, significantly reduced the frequency and concentration of dissolved Mn entering the WTP. This in turn significantly reduced the amount of Mn entering the distribution system.

Anecdotally, approximately half of all colored water events are localized to the oldest part of the distribution system, which is supplied by a major treated water distribution line that has previously shown evidence of Mn accumulation. The pipe in the Mn impacted area is primarily 4" diameter unlined ductile or cast iron pipe. According to utility staff, these areas tend to have more tuberculation and increased sediment accumulation. The remaining events are spread throughout the distribution system, which consists of a variety of pipe diameters and materials.

Measured

Utility C began documenting customer complaints in 2000. A summary of the total number of complaints per year is provided in Table 1.1. With the exception of the large events in 2002 – caused by the start-up of a new WTP and 2006 – caused by a change in raw water management strategy, and smaller events in 2011 and 2012, Utility C typically receives an average of 50 complaints per year. The number of complaints has slightly increased over the last few years. The utility attributes this to special circumstance in 2011 and 2012. In 2011, due to the success of the lake aeration system added in 2009, Utility C discontinued the use of free chlorine upstream of their filters, allowing them to become biologically active. In anticipation of this change Utility C treated their filter media with sodium bisulfate to solubilize Mn which had accumulated on the filter. Even though this process was successful, the utility believes some residual Mn occasionally leaches from the filters, possibly causing an increase in colored water events in 2011.

The increase in complaints in 2012 is attributed to early summer (domestic irrigation) demands. Utility C regularly performs a non-unidirectional system flush each spring in anticipation of increased demands during the summer. The utility's intent is to do an early flush to purge accumulated sediment, including Mn which may accumulated during low demand periods.

The increase in complaints in 2012 is attributed to the first peak demand of each year occurring before the system flush. The water demands neared peak summer demands in the early spring before the annual system wide flush had occurred. The bulk of complaints in 2012 occurred in early spring from March to May. The high velocities in the system resulting from the peak demands are thought to have acted as an unintentional system flush, dislodging scale in the pipes and resulting in colored water events.

The total number of complaints per month for the 2000 through 2012 time frame is shown on Table 1.1. The years are classified as 'event' years and 'baseline' years. Event years, 2002, 2006, 2011 and 2012 are years where specific events can be related to colored water events in the distribution system. Baseline years are those years when no exceptional event occurred and colored water complaints are most likely related to 'routine' disturbances in the distribution system.

complaints per year													
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
January	14	5	10	4	0	2	5	2	0	0	3	3	15
February	6	6	16	3	4	3	4	3	2	3	5	0	1
March	9	18	25	3	3	1	29	2	3	2	5	5	12
April	3	11	54	6	1	4	36	4	1	1	1	5	18
May	2	8	140	4	2	6	10	5	0	4	1	5	14
June	0	4	42	1	4	5	3	11	6	2	4	18	6
July	2	3	54	4	3	2	0	1	1	1	4	6	4
August	4	2	5	5	4	3	99	5	4	2	3	7	1
September	1	3	7	10	1	0	1	2	1	8	4	11	4
October	4	3	11	1	3	0	3	3	8	4	1	7	3
November	14	6	7	1	0	2	0	0	7	2	2	6	4
December	1	22	6	0	4	9	2	3	3	3	10	2	1
Total:	60	91	377	42	29	37	192	41	36	32	43	75	83
Year Classification	?	?	Event	I	Baseline		Event		Bas	eline		Event	Event

 Table Error! No text of specified style in document..1 Total number of colored water complaints per year

Utility C provides service to over 20,000 service connections and over 20 wholesale connections. This results in a complaint ratio ranging from approximately 1 complaint per 53 to 690 service connections per year. Excluding the high complaint years, due to construction of the new WTP in 2002 and the Mn pass through event in 2006, the complaint ratio ranges from 1 complaint per 220 to 690 service connections per year.

Actions Taken to Restore Satisfaction

Internal

Response to Customer Complaints – Utility C follows up on customer complaints of colored water by visiting the particular residence or location that are not cleared by the customer flushing their lines. If warranted the utility representative will perform spot flushing of the water mains in the vicinity of the residence to displace colored water and restore water quality. Water quality samples are not typically obtained for colored water complaints.

External

Restitution – Utility C has not made payment or restitution for any damages, whether perceived or real, due to legacy Mn or co-occurring contaminants. However, they have provided several customers with a product that can be used to remove colored water stains from laundry.

Service Interruption Response – Utility C has never interrupted service as a result of a Mn release event.

Public Relations – Utility C employs a full time public outreach director and consistently publishes information regarding water quality, scheduled system improvements, instructions on

how to handle colored water events, etc. Notification methods include: posts on the social media site, publications in the local newspaper and a utility newsletter which is mailed with water bills. The individual responsible for public relations does not believe he spends a disproportionate amount of time on colored water events.

Public Meetings – Utility C does not hold public meetings in relation to colored water events.

Effectiveness of Actions in Addressing Customer Satisfaction Issues

Customers seem generally satisfied with Utility C's actions both to inform the public of potential colored water events and with the utility's response to individual complaints.

Cost Impacts

Response to Customer Complaints – Utility C reportedly spends an average of 2 total person-hours per complaint to visit the customer and flush the line.

Restitution – Utility C has not paid direct costs for restitution.

Public Relations – The amount of time spent specifically addressing colored water concerns are absorbed into the daily workload and do not directly increase the cost of customer outreach.

Public Meetings – Utility C does not hold public meetings in relation to colored water events.

Lost Revenue – Utility C reported no loss of customers or detectable change in water sales due to legacy Mn release events.

Co-Occurring Contaminants

Manganese-Based Inorganics Accumulation

Contaminants

Utility C has monitored for a broad range of contaminants in distribution system water samples since 1995. This includes routine surveillance monitoring at several fixed locations as well as monitoring performed during excursion events and flushing activities. The routine system monitoring program was developed in response to the detection of Mn in the distribution system following installation of the new water tank in 1995. Under this plan, Utility C performs weekly sampling at 9 locations. All analyses are performed in house using ICP.

Parameters regularly monitored include: total Mn, total Fe, other metals, pH, alkalinity and hardness. Organic contaminants (aside from disinfection byproducts) were consistently demonstrated to be non-detect. Similarly, coliform and *E. coli* have not been detected in the distribution system.

Distribution System Sampling

Routine system monitoring is not performed with the specific purpose of monitoring metals accumulation. The locations and sampling methods are not optimized to measure potential metals that may have mobilized from the pipe interior and the results are not applicable to this study.

However, Utility C performed field testing to provide additional data for the project. The objective of the proposed field testing was to determine the mass of Mn released and which compounds are released into the water supply during typical planned flushing and reactive flushing after colored water events. There was no attempt to determine the origin of the sediment. Utility C has been practicing conventional flushing for several years and they do not have a unidirectional flushing program in place. The utility has provided anecdotal evidence that they often just "chase Mn around the system" during large scale colored water events. It is likely that sediment in the distribution system has already been transported from various locations within the system and its origin is unknown.

The samples were obtained using conventional flushing methods from four distinct locations. A map of the distribution system and the selected sample sites is provided on Figure 1.3. Each location has a variety of branches and system flow patterns. The velocity that mobilized the sediment is unknown, but the velocity from which the sample was taken ranged from 6 to 13 feet per second. Samples were obtained from the distribution system through hydrants that were likely to carry water that traveled through the primary treated water distribution line. This line is of interest for the following reasons:

- A. Mn accumulation evidence which was seen while pigging the line in 1995
- B. It carries primarily surface water, which is the source of Mn in this system
- C. It feeds the oldest part of the distribution system which has the most evidence of colored water events.

Samples were collected from four locations in the distribution system. The locations were selected based on the following criteria, listed in order of importance:

- A. Likelihood that the location is fed by the primary treated water distribution line
- B. Water age in the system. The water age at each of the four locations is as follows:
 - 1. 26 hours
 - 2. 55 hours
 - 3. 80 hours
 - 4. 102 hours
- C. All locations have an average winter velocity<0.5 fps
- D. All sample points are on a hydrant off an 8" diameter main line
- E. Three of the four sample locations were dead ends on the distribution system, allowing for higher scouring velocity in the main line.

The following methodology was followed during sample collection:

- A. Completely open hydrant
- B. Take a sample (all samples are 500 mL) every 15 seconds after opening the hydrant, for 1 minute
- C. Take a sample every 30 seconds for the next two minutes (8 samples per location)
- D. Measure turbidity of samples
- E. Label the location that the sample was taken and sample number for that location (Label the first sample which would be taken after 15 sec, 1, the second 2, etc.)
- F. Take samples from all four locations on the same day, preferably during low demand time

The following methodology was followed during sample testing:

- A. Measure turbidity
 - 1. If turbidity > 1 NTU
 - a. Save in unpreserved container and test within 24 hours
 - b. Apply EPA Method 3010 A to dissolve solids

- c. Run ICP on sample
- 2. If turbidity < 1 NTU
 - a. Save in a standard nitric-preserved container for metals
 - b. Run ICP on sample
- B. Test HPC, chlorine residual, pH, turbidity, ORP
- C. Samples were not filtered in the field, thus only total Mn values were collected

Findings/Correlations

Colored water was observed at three of the four sample sites. Reference Figure **Error! No text** of **specified style in document.** 1 for photos of the samples taken from each site.

Figure Error! No text of specified style in document..1 Hydrant flush samples collected from Site 1 (top left), Site 2 (top right), Site 3 (bottom left) and Site 4 (bottom right)

The samples at Site 1 appeared clear, where as samples from Sites 2, 3 and 4 were noticeably discolored. The estimated amount of Mn released during the four hydrant flushes ranged from 3,800 mg to 14,400 mg. The estimated amount of iron released during the four hydrant flushes ranged from 2,000 mg to 211,000 mg. As shown in Table **Error! No text of specified style in document.** 2, the Mn mass released at Site 3 was more than double the mass released at Site 1 and the mass released at Sites 2 and 4 was nearly four times the mass released at Site 1.

					0			Fe
					Total Mn	. Mn		released
		-	a		mass	released	Total Fe	per
	Primary	b	Cumulative	Volume	expelled	per surface	mass	surface
Site	Material	E	Time	expelled	during	area of	expelled	area of
	material	õ			interval	pipe	onponoa	nine
					interval	flushed		flushed
			Sec	gal	ma	ma/ft ²	ma	ma/ft ²
		1	0	0	<u>J</u>	<u> </u>	U	
		2	15	511	493	1.2	399	1.0
		3	30	1,021	366	0.9	395	1.0
		4	45	1,532	219	0.5	225	0.5
	Ductile	5	60	2,043	289	0.7	198	0.5
1	Iron	6	90	3,064	634	0.8	245	0.3
		7	120	4,086	638	0.8	178	0.2
		8	150	5,107	584	0.7	159	0.2
		9	180	6,128	556	0.7	159	0.2
			Total for \$	Site	3,780	0.8	1,959	3.9
		1	0	0				
		2	15	488	1,134	2.9	74,941	191.6
		3	30	975	991	2.5	53,850	137.7
	Dustila	4	45	1,463	856	2.2	34,439	88.0
2 Duc 2 Irc	Ductile	5	60	1,950	751	1.9	10,433	26.7
	Iron	6	90	2,925	1,765	2.3	15,774	20.2
		7	120	3,900	4,703	6.0	13,018	16.6
		8	150	4,875	4,224	5.4	8,836	11.3
			Total for \$	Site	14,424	3.7	211,291	492.1
		1	0	0				
		~	4 5	550	4.047		500	4.0
		2	15	552	1,947	4.4	580	1.3
-		3	30	1,105	997	2.3	484	1.1
3	PVC	4	45	1,657	870	2.0	478	1.1
		5	60	2,209	862	1.9	622	1.4
		6	90	3,314	1,583	1.8	1,394	1.6
		1	120	4,418	1,322	1.5	1,265	1.4
		8	150 Total far (5,523	1,362	1.5	1,316	1.5
			TOTALION	Sile	0,942	2.0	6,139	9.4
		1	0	0				
		-	-	-				
		2	15	500	1,337	3.3	770	1.9
		3	30	1,001	1,289	3.2	690	1.7
	Ductile	4	45	1,501	1,244	3.1	687	1.7
4	Iron	5	60	2,001	1,305	3.3	704	1.8
		6	90	3,002	2,642	3.3	1,613	2.0
		7	120	4,002	2,411	3.0	1,489	1.9
		8	150	5,003	2,153	2.7	1,322	1.6
		9	180	6,004	2,126	2.6	1,322	1.6
			Total for S	Site	14,507	3.0	8,596	14.3

 Table Error! No text of specified style in document..2 Estimate of Mn and Fe released during flushing

As previously described, ICP analysis was performed on each sample collected. Compounds detected in the samples included: aluminum, barium, beryllium, boron, calcium, cadmium, cobalt, copper, iron, potassium, lithium, magnesium, manganese, nickel, strontium, thallium, vanadium and zinc. The concentration of iron and manganese exceeded their respective secondary maximum contaminant levels (SMCLs) at all four sites in at least one of the samples taken. The concentration of aluminum exceeded its SCML in half of the samples taken at Site 2 and in the first sample taken at Site 3. However, there was no evidence that any compounds detected in the samples exceed drinking water standards established by the SDWA. The three compounds mentioned are secondary contaminants and the SMCLs are classified by the SDWA as non-enforceable guidelines for contaminants that may cause cosmetic effects or aesthetic effects in drinking water. It is likely that in addition to manganese, iron and aluminum contribute to the colored water events that are occasionally seen in Utility C's system. The concentration of aluminum, iron and manganese for each sample taken is summarized in Table **Error! No text of specified style in document..**3; samples that exceed the SMCL are shown in bold.

Sito	Primary	nple	Cumulative Time Volume expelled		Aluminum Concentration	Iron Concentration	Manganese Concentration
Sile	Material	Sar	sec	gal	mg/L	mg/L	mg/L
		1	0	0	ND	0.109	0.225
		2	15	511	ND	0.305	0.286
		3	30	1,021	ND	0.104	0.094
1	Ductile Iron	4	45	1,532	ND	0.129	0.133
		5	60	2,043	ND	0.077	0.167
		6	90	3,064	ND	0.050	0.162
		7	120	4,086	ND	0.042	0.169
		8	150	5,107	ND	0.040	0.134
		9	180	6,128	ND	0.043	0.154
		1	0	0	0.07	53.504	0.707
		2	15	488	0.06	27.829	0.523
		3	30	975	0.08	30.614	0.553
•	Ductile	4	45	1,463	0.04	6.762	0.377
2	Iron	5	60	1,950	ND	4.560	0.439
		6	90	2,925	ND	3.999	0.519
		7	120	3,900	0.18	3.065	2.033
		8	150	4,875	ND	1.730	0.259
		1	0	0	0.06	0.306	1.325
_	PVC	2	15	552	ND	0.250	0.541
		3	30	1,105	ND	0.214	0.415
		4	45	1,657	ND	0.244	0.419
3		5	60	2,209	ND	0.352	0.407
		6	90	3,314	ND	0.316	0.351
		7	120	4,418	ND	0.291	0.282
		8	150	5,523	ND	0.340	0.370
ļ		1	0	0	ND	0.456	0.689
	Ductile Iron	2	15	500	ND	0.358	0.726
		3	30	1,001	ND	0.372	0.638
		4	45	1,501	ND	0.354	0.678
4		5	60	2,001	ND	0.390	0.702
		6	90	3,002	0.04	0.463	0.695
		7	120	4,002	ND	0.325	0.580
		8	150	5,003	ND	0.374	0.559
		9	180	6,004	ND	0.325	0.566
Estimated							
				Minimum			
				Detection Limit	0.04	0.007	0.000
				(mg/L):	0.04	0.007	0.002
				SIVICE (Mg/L):	0.05	0.3	0.05

Table Error! No text of specified style in document..3 Summary of co-occurring compounds released during flushing

The pipe specimen shown in Figure **Error! No text of specified style in document.**.2 had been removed from Utility C's distribution system and was being stored prior to disposal. Evidence of tuberculation resulting from metals precipitation can be seen on the pipe interior.

Figure Error! No text of specified style in document..2 Evidence of tuberculation inside scraped water main

Regulatory Compliance Issues

MCLs/SMCL

Utility C has not faced any regulatory compliance challenges excluding a temporary exceedence of the secondary MCL for Mn during the 2006 pass through event. They have never faced compliance issues associated with release of legacy Mn or potential co-occurring metals.

Other

Utility C reported an improvement in chlorine residual stability since routine flushing activities were initiated in 1995. This may be due to the removal of Mn solids and other chlorine-demanding compounds.

Cost Impacts

Labor Effort

Utility C performs routine weekly surveillance monitoring of inorganic contaminants within its distribution system at selected TCR sites. The utility considers this informal monitoring program as a good management practice. Since this monitoring is not specifically focused on Mn, the cost of this surveillance is not directly due to Mn accumulation. Viewed from another perspective, Utility C would do this monitoring independent of their experience with Mn.

Analytical

The costs of lab analytics are not directly due to Mn accumulation.

Contractor

Utility C performs monitoring activities in-house and thus does not incur contractor-related costs.

Response to Manganese Accumulation/Release

Trends in Manganese Occurrence

Manganese accumulation occurs to some degree throughout the utility distribution system, as reflected by complaints of colored water that are not related to Mn passing through the WTP. However, there is a strong spatial component to the extent of accumulation. Mn accumulation is most prevalent and problematic in the oldest part of the system, in the downtown area. Pipe materials in these areas are primarily unlined ductile and cast iron pipe. Additionally, this area is the first to receive water that has traveled through a system delivery main that has previously shown evidence of Mn accumulation. It is possible that Mn accumulates in the supply main and is occasionally flushed into the oldest part of the distribution system.

Utility C reported that very large Mn events tend to be system wide, in which the utility responds to customer complaints by flushing a local hydrant. The problem then tends to move throughout the system. It seems as though the operators are "chasing the Mn around the system" until it has been dispersed throughout system taps and hydrant flushes.

Utility Response Measures

System Monitoring

In addition to performing routine weekly monitoring within its distribution system, Utility C performs sampling/monitoring as part of their annual flushing activities. They typically collect and analyze approximately 125 samples over the course of the one month flushing program. They typically collect 4-5 samples in each system area, but sample locations are not consistent.

Monitoring includes both on-site field tests and samples for off-site analyses. While the parameters assessed vary depending on the nature of the issue, location, and other factors, the following parameters are often tested: pH, temperature, alkalinity, conductivity, hardness, turbidity, color, chlorine residual, metals, anions, and HPC.

Reactive Flushing

Utility C uses conventional flushing methods. System pressures are fairly consistent throughout the distribution system, ranging from ~120-150 psi. The flushing velocity is difficult to predict because lines are not isolated during a flush. Water velocity is dependent on the quantity and diameter of lines feeding the flush site, which is further dependent on other system demands during the time of the flush.

In response to individual or isolated customer complaints, Utility C performs localized flushing as described previously. In response to events involving more numerous and widespread complaints, the utility performs area wide flushing. If needed to restore water quality, the utility will flush the area or zone multiple times as warranted based on data. Utility C flushes until the water runs clear when responding to colored water complaints, typically 15-20 minutes from the time of opening the hydrant.

Labor impacts/costs associated with distribution system flushing are summarized in Table **Error! No text of specified style in document.**.4. Separate columns are provided for reactive flushing for three selected years, 2006 which represents an unusually high annual number of complaints due to high Mn concentrations which passed through the WTP, 2008 which represents a typical complaint year and 2012 which represents a year with a high number of complaints that are attributed to Mn release from within the distribution system. Response costs for 2012 are expected to be more representative of legacy Mn costs compared to 2006 costs which include more costs due to Mn pass through events. A column for routine annual system-wide preventative flushing is also included. Note that routine preventative maintenance is much more costly than any of the annual costs for complaint response.

		2006	2008	2012	Doutino	
Parameter	Unit	Complaint Response ^{4, 8}	Complaint Response ^{4, 9}	Complaint Response ^{4, 10}	Preventative ⁵	
# of complaints		192	36	83	N/A	
Pipe-Miles Flushed ¹	pipe-mile	96	18	42	434	
Number of Days of Flushing	days	48.0	9.0	20.8	20	
Average Cleaning Rate	pipe- mile/day/crew ²	2	2	2	2	
Total Pipe-Miles in Area	pipe-mile total	433	434	435	434	
Area Turnover per Year	% of service area	22%	4%	10%	100%	
Total Labor for Field Crew	person-hours	384	72	166	1760	
Normalized Labor for Field Crew	person- hours/pipe-mile flushed	4.0	4.0	4.0	4.1	
Estimated Cost of Field Crew Labor ³	\$	\$14,884.80	\$2,790.90	\$6,434.58	\$68,222.00	
Normalized Cost of Field Crew Labor ³	\$/pipe-mile flushed	\$155.05	\$155.05	\$155.05	\$157.19	
Mileage	Total miles driven ⁶	1,920	360	830	2,250	
Annual Fuel Cost	Fuel Cost ⁷	\$448.00	\$84.00	\$193.67	\$525.00	
Normalized Fuel Cost	Fuel Cost/pipe- mile flushed	\$4.67	\$4.67	\$4.67	\$1.21	

 Table Error! No text of specified style in document..4 Summary of reactive and preventative flushing impacts

1. Based on one half mile flushed per complaint.

2. Based on 8-hr shifts per day

3. Based on burdened labor rate of \$38.76/hour

- 4. One person crews are needed for complaint response, 2 hours needed per complaint
- 5. Eleven person crews are needed for routing preventative flushing
- 6. Assume 9 trucks for annual flushing driving 12.5 miles per day, assume each complaint requires 10 miles driving
- 7. Assume 15 miles per gallon and \$3.50/gallon
- 8. 2006 was selected to represent an unusually high number of complaints due to Mn passing through the WTP
- 9. 2008 was selected to represent a typical complaint year

10. 2012 was selected to represent a year with a high number of complaints that are due to Mn release from the distribution system

Equipment Fouling

Utility C has not knowingly experienced equipment failure due to Mn accumulation. Tuberculation has been observed in removed pipe specimens throughout the system, but neither pipes nor equipment have had to be replaced or repaired as a direct result of Mn accumulation.

Cost Impacts

Labor Effort

The labor time/cost associated with performing monitoring and local flushing in response to individual customer complaints is factored into the average figure of 2 total person-hours per complaint.

Analytical

Samples are not collected or analyzed for colored water complaints.

Contractor

Utility C performs flushing and monitoring activities in-house and thus does not incur contractorrelated costs for these tasks, aside from contract laboratory expenses as previously discussed.

Prevention of Manganese Accumulation/Release

Triggers or Indications of Accumulation or Release

Discoloration events are typically associated with release of accumulated precipitates and/or dispersion of black slime layers. The degree of discoloration depends on the amount of material entrained. Release events occur due to physical/hydraulic mobilization resulting from flow reversals and velocity changes, as well as chemical destabilization and solubilization resulting from water chemistry shifts.

Utility C can often associate a colored water event with street sweeping in the area. The street sweeping crew will often use a large volume of water from a single hydrant which can mobilize sediment. Similarly, Utility C can expect to have calls related to dirty or colored water following a water line break or a fire event.

Prevention Methods

Treatment

Mn specific treatment has been used in Utility C's treatment system for nearly 20 years. The Utility's new WTP was built in 2002. It included conventional treatment and Mn coated filter

media to remove Mn. Beginning in 2004, chlorine dioxide was fed upstream of the new WTP to improve Mn removal efficiency. Potassium permanganate was also fed into the raw water line upstream of the new plant on a seasonal basis to control Mn. However, Mn would still pass through the treatment barriers and into the distribution system during periods of high raw water Mn concentration due to Mn release in the stratified raw water reservoir.

As previously mentioned, improvements were made to Utility C's raw water system in 2009 which have significantly reduced the concentration and frequency of Mn loading to the WTP. Preoxidants are no longer added to the raw water and the coated filter media was cleaned to release the accumulated Mn. The raw water improvements have effectively eliminated the need for Mn removal at the WTP. Utility C maintains free chlorine residual throughout its distribution system for secondary disinfection purposes, with a target range of 0.3 - 1.0 mg/L as Cl₂.

Preventative Flushing

Utility C developed a conventional flushing program in 1995 in response to a Mn event. Prior to this, the utility only performed conventional spot flushing as needed to address discoloration complaints. Annual flushing is performed on the entire system, but only using 50% of the hydrants; selected hydrants are alternated each year. The purpose of this effort is to control solids and metals buildup, including but not exclusive to Mn, with the goal to prevent further excursion events. System flushing for prevention of Mn events is performed in the same manner as reactive flushing described above.

Preventative Pigging

Pigging was performed on the main water line that conveys treated water from the area of the new WTP to the oldest part of the distribution system. The pigging was performed in 1995 following the first confirmed Mn event. Utility C reports that a black slime layer was observed on the pipe interior during the pigging operation. No additional pigging has been performed since this time and none is currently planned.

Effectiveness of Measures

Utility C reports fewer dirty water calls over the summer high demand months since the flushing program has been in place. The increase in colored water complaints in 2011 is attributed to filter cleaning at the WTP. The increase in 2012 is attributed to an early hot spring during which, peak summer demands were seen prior to the annual system flush. It is thought that the early peak demands resulted in an unintentional system flush that mobilized sediment and possibly freed tuberculation particulates which resulted in an increase of colored water events.

Cost Impacts

Labor Effort

Labor effort/costs associated with sample collection for routine Mn monitoring are part of the overall costs for routine distribution system monitoring.

The labor time/cost for water department field crew to perform system-wide flushing is included in Table **Error! No text of specified style in document.**.5. The effort typically requires about 1,760 person-hours per year for routine flushing and 150 person-hours per year for complaint response (based on flushing done in 2011.) With a system inventory of over 430 pipe-miles, this equates to an average of 4.1 person-hours per pipe-mile preventatively flushed, which is nearly identical to that of response flushing. However, given that preventative flushing is based on

100% turnover and response flushing is based on 9% turnover, the person-hours per total pipemiles are comparatively lower. The average burdened rate for field crew is \$38.76 per hour.
Analytical

All lab work is performed in house at the WTP laboratory. Laboratory analytical costs associated with routine Mn monitoring are part of the overall costs for routine distribution system monitoring.

The absolute labor time/cost associated with water quality monitoring during preventative flushing typically requires four hours per sample, for approximately 125 samples, or 500 personhours per year. This includes time to collect and analyze the sample. Approximately two and a half hours are spent by a staff person to collect the sample and an additional one and a half hours are spent by a lab supervisor to analyze the sample. The average burdened rate for lab staff is \$35.49 and a lab supervisor is \$50.66 per hour. There is an additional cost of \$15 per sample for equipment and chemicals to run the analytics. The approximate lab costs associated with annual flushing are \$22,464 per year. A summary of these costs are included in Table **Error! No text of specified style in document..**5.

Contractor

Utility C performs flushing activities in-house and thus does not incur contractor-related costs for that activity.

Summary of Cost Impacts

Table **Error! No text of specified style in document.**.5 summarizes Utility C cost impacts described in this case study associated with, but not necessarily exclusive to, the accumulation of Mn. As previously discussed, some costs are not tracked and cannot be reliably estimated. Except where otherwise noted, internal costs associated with utility labor are based on Y2012 burdened costs inclusive of fringe benefits range from \$35.49/hr to \$50.66/hr.

As shown in Table **Error! No text of specified style in document.**.5, certain impacts and absolute effort/cost figures have been normalized using spatial and temporal factors. For a given impact, these factors were specific to the zone and timeframe in which the impact data applied or was derived for, e.g., system-wide or excursion area, and annual vs. specific event.

	manganese co	st impacts		
Activity	Absolute Impact and Costs ¹	Normalized Impact and Costs ¹	Notes/Comments	
	Response to Mn Accu	unulation/Release		
Labor for flushing in response to colored water complaints	36 per year system- wide (Y2008)	1 per 556 services per year (Y2008)	See Table Error! No text of specified style in document4 for more detailed breakdown	
Labor for addressing customer water quality complaints	72 hrs/year ~ \$3,000/year	0.004 hrs/service/year = \$0.15/service/ year	Average 2 hrs per complaint.	
Laboratory cost associated with monitoring during complaint follow-up	\$0/year	\$0/complaint/year	Lab work is not typically performed for colored water complaints	
	Prevention of Mn Accumulation/Release			
Labor effort for routine system-wide conventional flushing program	2,250 hrs/year = \$68,200/year	5.2 hrs/pipe-mile total/year		
		\$157/pipe-mile total/year		
Equipment costs for flushing program	\$525/year	\$1.21/pipe-mile flushed		

 Table Error! No text of specified style in document..5 Summary of Utility C legacy

 manganese cost impacts

Appendices

Appendix 5-G Pipeline Capital Improvement Projects Cost Estimates

2013 Cheyenne Water and Wastewater Master Plans Volume 5 - Potable Water Storage and Distribution

REVISED

9/19/13

Potable Water Near-term Projects

Unit Cost Total Cost Item Description Quantity Unit Southern Water Transmission Main - Phase III Water Main 36-inch Steel Pipe including installation 10,640 350.00 LF \$3,724,000 30-inch Steel Pipe including installation 6,220 LF 300.00 \$1,866,000 20-inch PVC Pipe including installation LF \$1,686,060 9,367 180.00 \$943,500 16-inch PVC Pipe including installation 6,290 LF 150.00 SUBTOTAL \$8,219,560 **GENERAL REQUIREMENTS** Mobilization, Bonds and Insurance (15% of subtotal) LS \$1,232,900 Contractor Overhead & Profit (12% of subtotal) LS \$986,300 **Construction Subtotal** LS \$10,438,800 Year of Construction YR 2015 **Escalation Rate** 3.5% % Escalation Costs (year of construction - 2013) LS \$730,700 LS \$521,900 Administrative and Easement Costs (5% of construction subtotal) LS \$1,252,700 Engineering (12% of construction subtotal) LS Design Contigency (30% of construction subtotal) \$3,131,600 Total Southern Water Transmission Main - Phase III \$16,076,000

Item Description	Quantity	Unit	Unit Cost	Total Cost
Southern Distribution Mains by 2023 (Year 2015)				
Water Main				
12-inch PVC Pipe including installation	3,680	LF	135.00	\$496,800
SUBTOTAL				\$496,800
GENERAL REQUIREMENTS				
Mobilization, Bonds and Insurance (15% of subtotal)		LS		\$74,500
Contractor Overhead & Profit (12% of subtotal)		LS		\$59,600
Construction Subtotal		LS		\$630,900
Year of Construction	2015	YR		
Escalation Rate	3.5%	%		
Escalation Costs (year of construction - 2013)		LS		\$44,200
Administrative and Easement Costs (5% of construction subtotal)	LS		\$31,500
Engineering (12% of construction subtotal)		LS		\$75,700 \$189,300
Total Southern Distribution	Mains by 2023	3 (Year 2015)		\$972,000

2013 Cheyenne Water and Wastewater Master Plans Volume 5 - Potable Water Storage and Distribution

REVISED 9/19/13

Item Description	Quantity	Unit	Unit Cost	Total Cost
Southern Transmission Mains by 2023 (Year 2017)				
Water Main				
18-inch PVC Pipe including installation	10,800	LF	175.00	\$1,890,000
SUBTOTAL				\$1,890,000
GENERAL REQUIREMENTS				
Mobilization, Bonds and Insurance (15% of subtotal)		LS		\$283,500
Contractor Overhead & Profit (12% of subtotal)		LS		\$226,800
Construction Subtotal		LS		\$2,400,300
Year of Construction	2017	YR		
Escalation Rate	3.5%	%		
Escalation Costs (year of construction - 2013)		LS		\$336,000
Administrative and Easement Costs (5% of construction subtotal)	LS		\$120,000
Engineering (12% of construction subtotal)		LS		\$288,000
Design Contigency (30% of construction subtotal)		LS		\$720,100
Total Southern Transmission Mains by 2023 (Year 2017)				\$3,864,000

Item Description	Quantity	Unit	Unit Cost	Total Cost
Southern Distribution Mains by 2023 (Year 2017)				
Water Main				
12-inch PVC Pipe including installation	11,190	LF	135.00	\$1,510,650
SUBTOTAL				\$1,510,650
GENERAL REQUIREMENTS				
Mobilization, Bonds and Insurance (15% of subtotal)		LS		\$226,600
Contractor Overhead & Profit (12% of subtotal)		LS		\$181,300
Construction Subtotal		LS		\$1,918,600
Year of Construction	2017	YR		
Escalation Rate	3.5%	%		
Escalation Costs (year of construction - 2013)		LS		\$268,600
Administrative and Easement Costs (5% of construction subtotal)	LS		\$95,900
Engineering (12% of construction subtotal)		LS		\$230,200
Design Contigency (30% of construction subtotal)		LS		\$575,600
Total Southern Distribution Mains by 2023 (Year 2017)				

2013 Cheyenne Water and Wastewater Master Plans Volume 5 - Potable Water Storage and Distribution

			REVISED	9/19/13
Item Description	Quantity	Unit	Unit Cost	Total Cost
Southern Transmission Mains by 2023 (Year 2018)				
Water Main				
24-inch PVC Pipe including installation	11,780	LF	275.00	\$3,239,500
SUBTOTAL				\$3,239,500
GENERAL REQUIREMENTS				
Mobilization, Bonds and Insurance (15% of subtotal)		LS		\$485,900
Contractor Overhead & Profit (12% of subtotal)		LS		\$388,700
Construction Subtotal		LS		\$4,114,100
Year of Construction	2018	YR		
Escalation Rate	3.5%	%		
Escalation Costs (year of construction - 2013)		LS		\$720,000
Administrative and Easement Costs (5% of construction subtotal)	LS		\$205,700
Engineering (12% of construction subtotal)		LS		\$493,700
Design Contigency (30% of construction subtotal)		LS		\$1,234,200
Total Southern Transmission	Aains by 2023	8 (Year 2018)		\$6,768,000

Item Description	Quantity	Unit	Unit Cost	Total Cost
Northern Distribution Mains by 2023 (Year 2019)				
Water Main				
12-inch PVC Pipe including installation	7,540	LF	135.00	\$1,017,900
SUBTOTAL				\$1,017,900
GENERAL REQUIREMENTS				
Mobilization, Bonds and Insurance (15% of subtotal)		LS		\$152,700
Contractor Overhead & Profit (12% of subtotal)		LS		\$122,100
Construction Subtotal		LS		\$1,292,700
Year of Construction	2019	YR		
Escalation Rate	3.5%	%		
Escalation Costs (year of construction - 2013)		LS		\$271,500
Administrative and Easement Costs (5% of construction subtotal)	LS		\$64,600
Engineering (12% of construction subtotal)		LS		\$155,100
Design Contigency (30% of construction subtotal)		LS		\$387,800
Total Northern Distribution Mains by 2023 (Year 2019)				\$2,172,000

Engineering (12% of construction subtotal)

Design Contigency (30% of construction subtotal)

2013 Cheyenne Water and Wastewater Master Plans Volume 5 - Potable Water Storage and Distribution

			REVISED	9/19/13
Item Description	Quantity	Unit	Unit Cost	Total Cost
Southern Distribution Mains by 2023 (Year 2021)				
Water Main				
12-inch PVC Pipe including installation	21,050	LF	135.00	\$2,841,750
SUBTOTAL				\$2,841,750
GENERAL REQUIREMENTS				
Mobilization, Bonds and Insurance (15% of subtotal)		LS		\$426,300
Contractor Overhead & Profit (12% of subtotal)		LS		\$341,000
Construction Subtotal		LS		\$3,609,100
Year of Construction	2021	YR		
Escalation Rate	3.5%	%		
Escalation Costs (year of construction - 2013)		LS		\$1,010,500
Administrative and Easement Costs (5% of construction subtotal)	LS		\$180,500
Engineering (12% of construction subtotal)		LS		\$433,100
Design Contigency (30% of construction subtotal)		LS		\$1,082,700
Total Southern Distribution	Mains by 2023	8 (Year 2021)		\$6,316,000

Item Description	Quantity	Unit	Unit Cost	Total Cost
Southern Distribution Mains by 2023 (Year 2022)				
Water Main				
12-inch PVC Pipe including installation	10,680	LF	120.00	\$1,281,600
SUBTOTAL				\$1,281,600
GENERAL REQUIREMENTS				
Mobilization, Bonds and Insurance (15% of subtotal)		LS		\$192,200
Contractor Overhead & Profit (12% of subtotal)		LS		\$153,800
Construction Subtotal		LS		\$1,627,600
Year of Construction	2022	YR		
Escalation Rate	3.5%	%		
Escalation Costs (year of construction - 2013)		LS		\$512,700
Administrative and Easement Costs (5% of construction subtotal)	LS		\$81,400

Total Southern Distribution Mains by 2023 (Year 2022)

LS

LS

\$195,300

\$488,300

\$2,905,000

2013 Cheyenne Water and Wastewater Master Plans Volume 5 - Potable Water Storage and Distribution

			REVISED	9/19/13
Item Description	Quantity	Unit	Unit Cost	Total Cost
Southern Distribution Mains by 2023 (Year 2023)				
Water Main				
12-inch PVC Pipe including installation	13,030	LF	135.00	\$1,759,050
SUBTOTAL				\$1,759,050
GENERAL REQUIREMENTS				
Mobilization, Bonds and Insurance (15% of subtotal)		LS		\$263,900
Contractor Overhead & Profit (12% of subtotal)		LS		\$211,100
Construction Subtotal		LS		\$2,234,100
Year of Construction	2023	YR		
Escalation Rate	3.5%	%		
Escalation Costs (year of construction - 2013)		LS		\$781,900
Administrative and Easement Costs (5% of construction subtotal)	LS		\$111,700
Engineering (12% of construction subtotal)		LS		\$268,100
Design Contigency (30% of construction subtotal)		LS		\$670,200
Total Southern Distribution	Mains by 2023	8 (Year 2023)		\$4,066,000

2013 Cheyenne Water and Wastewater Master Plans Volume 5 - Potable Water Storage and Distribution

REVISED 9/19/13

Item Description	Quantity	Unit	Unit Cost	Total Cost
Southern Transmission Mains by 2033 (Year 2028)				
Water Main				
24-inch PVC Pipe including installation	5,210	LF	275.00	\$1,432,750
18-inch PVC Pipe including installation	41,860	LF	175.00	\$7,325,500
16-inch PVC Pipe including installation	29,000	LF	150.00	\$4,350,000
SUBTOTAL				\$13,108,250
GENERAL REQUIREMENTS				
Mobilization, Bonds and Insurance (15% of subtotal)		LS		\$1,966,200
Contractor Overhead & Profit (12% of subtotal)		LS		\$1,573,000
Construction Subtotal		LS		\$16,647,500
Year of Construction	2028	YR		
Escalation Rate	3.5%	%		
Escalation Costs (year of construction - 2013)		LS		\$8,739,900
Administrative and Easement Costs (5% of construction subtotal)	LS		\$832,400
Engineering (12% of construction subtotal)		LS		\$1,997,700
Design Contigency (30% of construction subtotal)		LS		\$4,994,300
Total Southern Transmission	Mains by 2033	8 (Year 2028)		\$33,212,000

Potable Water Mid-term Projects

Item Description	Quantity	Unit	Unit Cost	Total Cost
Southern Distribution Mains by 2033 (Year 2028)				
Water Main				
12-inch PVC Pipe including installation	121,300	LF	135.00	\$16,375,500
SUBTOTAL				\$16,375,500
12-inch PVC Pipe including installation SUBTOTAL	121,300	LF	135.00	\$16,375,5 \$16,375,5

GENERAL REQUIREMENTS			
Mobilization, Bonds and Insurance (15% of subtotal)		LS	\$2,456,300
Contractor Overhead & Profit (12% of subtotal)		LS	\$1,965,100
Construction Subtotal		LS	\$20,796,900
Year of Construction	2028	YR	
Escalation Rate	3.5%	%	
Escalation Costs (year of construction - 2013)		LS	\$10,918,400
Administrative and Easement Costs (5% of construction subtota	I)	LS	\$1,039,800
Engineering (12% of construction subtotal)		LS	\$2,495,600
Design Contigency (30% of construction subtotal)		LS	\$6,239,100
Total Southern Distribution	Mains by 2033	3 (Year 2028)	\$41,490,000

2013 Cheyenne Water and Wastewater Master Plans Volume 5 - Potable Water Storage and Distribution

REVISED

9/19/13

Item Description	Quantity	Unit	Unit Cost	Total Cost
Northern Distribution Mains by 2033 (Year 2028)				
Water Main				
12-inch PVC Pipe including installation	53,210	LF	135.00	\$7,183,350
8-inch PVC Pipe including installation	1,290	LF	120.00	\$154,800
SUBTOTAL				\$7,338,150
GENERAL REQUIREMENTS				
Mobilization, Bonds and Insurance (15% of subtotal)		LS		\$1,100,700
Contractor Overhead & Profit (12% of subtotal)		LS		\$880,600
Construction Subtotal		LS		\$9,319,500
Year of Construction	2028	YR		
Escalation Rate	3.5%	%		1
Escalation Costs (year of construction - 2013)		LS		\$4,892,700
Administrative and Easement Costs (5% of construction subtotal)	LS		\$466,000
Engineering (12% of construction subtotal)		LS		\$1,118,300
Design Contigency (30% of construction subtotal)		LS		\$2,795,900
Total Northern Distribution Mains by 2033 (Year 2028)				\$18,592,000

Item Description	Quantity	Unit	Unit Cost	Total Cost
Southern Water Transmission Main - Phase IV (Year 2028)				
Water Main				
30-inch PVC Pipe including installation	3,920	LF	325.00	\$1,274,000
16-inch PVC Pipe including installation	17,860	LF	150.00	\$2,679,000
12-inch PVC Pipe including installation	19,920	LF	135.00	\$2,689,200
SUBTOTAL				\$6,642,200
GENERAL REQUIREMENTS				
Mobilization, Bonds and Insurance (15% of subtotal)		LS		\$996,300
Contractor Overhead & Profit (12% of subtotal)		LS		\$797,100
Construction Subtotal		LS		\$8,435,600
Year of Construction	2028	YR		
Escalation Rate	3.5%	%		
Escalation Costs (year of construction - 2013)		LS		\$4,428,700
Administrative and Easement Costs (5% of construction subtotal)	LS		\$421,800
Engineering (12% of construction subtotal)		LS		\$1,012,300
Design Contigency (30% of construction subtotal)		LS		\$2,530,700
Total Southern Water Transmission Main - Phase IV (Year 2028)				\$16,829,000